Citation: Zheng-Tao Wu, Jia-Jia Zhou. Mechanical Properties of Interlocked-ring Polymers: A Molecular Dynamics Simulation Study[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1298-1304. doi: 10.1007/s10118-019-2279-z shu

Mechanical Properties of Interlocked-ring Polymers: A Molecular Dynamics Simulation Study

  • Corresponding author: Jia-Jia Zhou, jjzhou@buaa.edu.cn
  • Received Date: 24 March 2019
    Revised Date: 15 April 2019
    Available Online: 4 June 2019

  • Interlocked-ring polymers, also known as polycatenanes, possess an interesting molecular architecture. These polymers are composed of many interlocked rings in a linear chain. The topological constrain between neighboring rings distinguishes the interlocked-ring polymer from its linear counterpart. Here we present extensive molecular dynamic simulations on the interlocked-ring polymers and analyze the static properties of the polymer. By applying external forces to the polymer, we also study the force-extension curves of the polymer, which provides rich information about the mechanical properties of the interlockedring polymers.

    1. [1]

      de Gennes, P. G. in Scaling concepts in polymer physics. Cornell University Press, Ithaca, 1979.

    2. [2]

      Doi, M.; Edwards, S. F. in The theory of polymer dynamics. Clarendon Press, Oxford, 1994.

    3. [3]

      M. Lang, J. Fischer, and J.-U. Sommer, " Effect of topology on the conformations of ring polymers,” Macromolecules 45, 7642-7648(2012).  doi: 10.1021/ma300942a

    4. [4]

      M. Lang, J. Fischer, M. Werner, and J.-U. Sommer, " Swelling of olympic gels,” Phys. Rev. Lett. 112(2014), 10.1103/physrevlett.112.238001.  doi: 10.1103/physrevlett.112.238001

    5. [5]

      J. Fischer, M. Lang, and J.-U. Sommer, " The formation and structure of olympic gels,” J. Chem. Phys. 143, 243114(2015).  doi: 10.1063/1.4933228

    6. [6]

      M. Arunachalam and Harry W. Gibson, " Recent developments in polypseudorotaxanes and polyrotaxanes,” Prog. Polym. Sci. 39, 1043-1073(2014).  doi: 10.1016/j.progpolymsci.2013.11.005

    7. [7]

      Yumiki Noda, Yuki Hayashi, and Kohzo Ito, " From topological gels to slide-ring materials,” J. Appl. Polym. Sci. 131, 40509(2014).

    8. [8]

      Zhenbin Niu and Harry W. Gibson, " Polycatenanes,” Chem. Rev. 109, 6024-6046(2009).  doi: 10.1021/cr900002h

    9. [9]

      T. Pakula and K. Jeszka, " Simulation of single complex macromolecules. 1. structure and dynamics of catenanes,” Macromolecules 32, 6821-6830(1999).  doi: 10.1021/ma990248c

    10. [10]

      Qiong Wu, Phillip M. Rauscher, Xiaolong Lang, Rudy J. Wojtecki, Juan J. de Pablo, Michael J. A. Hore, and Stuart J. Rowan, " Poly[n]catenanes: synthesis of molecular interlocked chains,” Science 358, 1434-1439(2017).  doi: 10.1126/science.aap7675

    11. [11]

      Phillip M. Rauscher, Stuart J. Rowan, and Juan J. de Pablo, " Topological effects in isolated poly[n]catenanes: molecular dynamics simulations and rouse mode analysis,” ACS Macro Lett. 7, 938- 943(2018).  doi: 10.1021/acsmacrolett.8b00393

    12. [12]

      Kurt Kremer and Gary S. Grest, " Dynamics of entangled linear polymer melts: a molecular-dynamics simulation,” J. Chem. Phys. 92, 5057(1990).  doi: 10.1063/1.458541

    13. [13]

      John D. Weeks, David Chandler, and Hans C. Andersen, " Role of repulsive forces in determining the equilibrium structure of simple liquids,” J. Chem. Phys. 54, 5237(1971).  doi: 10.1063/1.1674820

    14. [14]

      William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson, " A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters,” J. Chem. Phys. 76, 637(1982).  doi: 10.1063/1.442716

    15. [15]

      Allen, M. P.; Tildesley, D. J. in Computer simulation of liquids. 2nd ed., Clarendon Press, Oxford, 2017.

    16. [16]

      Frenkel, D.; Smit, B. in Understanding molecular simulation. 2nd ed., Academic Press, 2002.

    17. [17]

      Steve Plimpton, " Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1-19(1995).  doi: 10.1006/jcph.1995.1039

    18. [18]

      Rubinstein, M.; Colby, R. H. in Polymer physics. Oxford University Press, Oxford, 2003.

    19. [19]

      Theo Odijk, " Stiff chains and filaments under tension,” Macromolecules 28, 7016-7018(1995).  doi: 10.1021/ma00124a044

    1. [1]

      de Gennes, P. G. in Scaling concepts in polymer physics. Cornell University Press, Ithaca, 1979.

    2. [2]

      Doi, M.; Edwards, S. F. in The theory of polymer dynamics. Clarendon Press, Oxford, 1994.

    3. [3]

      M. Lang, J. Fischer, and J.-U. Sommer, " Effect of topology on the conformations of ring polymers,” Macromolecules 45, 7642-7648(2012).  doi: 10.1021/ma300942a

    4. [4]

      M. Lang, J. Fischer, M. Werner, and J.-U. Sommer, " Swelling of olympic gels,” Phys. Rev. Lett. 112(2014), 10.1103/physrevlett.112.238001.  doi: 10.1103/physrevlett.112.238001

    5. [5]

      J. Fischer, M. Lang, and J.-U. Sommer, " The formation and structure of olympic gels,” J. Chem. Phys. 143, 243114(2015).  doi: 10.1063/1.4933228

    6. [6]

      M. Arunachalam and Harry W. Gibson, " Recent developments in polypseudorotaxanes and polyrotaxanes,” Prog. Polym. Sci. 39, 1043-1073(2014).  doi: 10.1016/j.progpolymsci.2013.11.005

    7. [7]

      Yumiki Noda, Yuki Hayashi, and Kohzo Ito, " From topological gels to slide-ring materials,” J. Appl. Polym. Sci. 131, 40509(2014).

    8. [8]

      Zhenbin Niu and Harry W. Gibson, " Polycatenanes,” Chem. Rev. 109, 6024-6046(2009).  doi: 10.1021/cr900002h

    9. [9]

      T. Pakula and K. Jeszka, " Simulation of single complex macromolecules. 1. structure and dynamics of catenanes,” Macromolecules 32, 6821-6830(1999).  doi: 10.1021/ma990248c

    10. [10]

      Qiong Wu, Phillip M. Rauscher, Xiaolong Lang, Rudy J. Wojtecki, Juan J. de Pablo, Michael J. A. Hore, and Stuart J. Rowan, " Poly[n]catenanes: synthesis of molecular interlocked chains,” Science 358, 1434-1439(2017).  doi: 10.1126/science.aap7675

    11. [11]

      Phillip M. Rauscher, Stuart J. Rowan, and Juan J. de Pablo, " Topological effects in isolated poly[n]catenanes: molecular dynamics simulations and rouse mode analysis,” ACS Macro Lett. 7, 938- 943(2018).  doi: 10.1021/acsmacrolett.8b00393

    12. [12]

      Kurt Kremer and Gary S. Grest, " Dynamics of entangled linear polymer melts: a molecular-dynamics simulation,” J. Chem. Phys. 92, 5057(1990).  doi: 10.1063/1.458541

    13. [13]

      John D. Weeks, David Chandler, and Hans C. Andersen, " Role of repulsive forces in determining the equilibrium structure of simple liquids,” J. Chem. Phys. 54, 5237(1971).  doi: 10.1063/1.1674820

    14. [14]

      William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson, " A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters,” J. Chem. Phys. 76, 637(1982).  doi: 10.1063/1.442716

    15. [15]

      Allen, M. P.; Tildesley, D. J. in Computer simulation of liquids. 2nd ed., Clarendon Press, Oxford, 2017.

    16. [16]

      Frenkel, D.; Smit, B. in Understanding molecular simulation. 2nd ed., Academic Press, 2002.

    17. [17]

      Steve Plimpton, " Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1-19(1995).  doi: 10.1006/jcph.1995.1039

    18. [18]

      Rubinstein, M.; Colby, R. H. in Polymer physics. Oxford University Press, Oxford, 2003.

    19. [19]

      Theo Odijk, " Stiff chains and filaments under tension,” Macromolecules 28, 7016-7018(1995).  doi: 10.1021/ma00124a044

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    3. [3]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    4. [4]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    5. [5]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    6. [6]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    7. [7]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    8. [8]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    9. [9]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    10. [10]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    11. [11]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    12. [12]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    16. [16]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    17. [17]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    18. [18]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    19. [19]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    20. [20]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

Metrics
  • PDF Downloads(0)
  • Abstract views(716)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return