Citation: Si Zhang, Xi-Mian Xiao, Fan Qi, Peng-Cheng Ma, Wei-Wei Zhang, Cheng-Zhi Dai, Dan-Feng Zhang, Run-Hui Liu. Biofilm Disruption Utilizing α/β Chimeric Polypeptide Molecular Brushes[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1105-1112. doi: 10.1007/s10118-019-2278-0 shu

Biofilm Disruption Utilizing α/β Chimeric Polypeptide Molecular Brushes

  • Corresponding author: Run-Hui Liu, rliu@ecust.edu.cn
  • Received Date: 13 March 2019
    Revised Date: 13 April 2019
    Accepted Date: 18 April 2019
    Available Online: 17 June 2019

  • Gram-negative bacteria can cause serious infections and are well known problems in biomedical practices. Biofilms of gram-negative bacteria are notorious for their frequently encountered resistance toward antibiotics. We demonstrate that α/β chimeric polypeptide molecular brush (α/β CPMB) exerts potent activities against antibiotic-resistant gram-negative bacteria. MTT viability assay, bacterial colony counting, and live/dead staining all indicate that α/β CPMB not only inhibits biofilm formation of gram-negative Pseudomonas aeruginosa and Acinetobacter baumannii, but also effectively disrupts mature biofilms that are highly resistant to one of the most active antibiotics—colistin. The superior antibacterial performance of the α/β CPMB implies its potential topical applications in treating biofilms.
  • 加载中
    1. [1]

      Parsek, M. R.; Singh, P. K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 2003, 57, 677-701.  doi: 10.1146/annurev.micro.57.030502.090720

    2. [2]

      Drescher, K.; Dunkeld, J.; Nadella, C. D.; Teeffelen, S. V.; Grnjaa, I.; Wingreenb, N. S.; Stone, H. A.; Bassler, B. L. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc. Natl. Acad. Sci. 2016, 113, 2066-2072.  doi: 10.1073/pnas.1601702113

    3. [3]

      Zheng, C. X.; Zhao, Y.; Liu, Y. Recent advances in self-assembled nano-therapeutics. Chinese J. Polym. Sci. 2017, 36, 322-346.

    4. [4]

      Wei, T.; Yu, Q.; Chen, H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way. Adv. Healthc. Mater. 2019, 8, 1801381-1801405.  doi: 10.1002/adhm.v8.3

    5. [5]

      Cheung, R. C. F.; Wong, J. H.; Pan, W. L.; Chan, Y. S.; Yin, C. M.; Dan, X. L.; Wang, H. X.; Fang, E. F.; Lam, S. K.; Ngai, P. H. K.; Xia, L. X.; Liu, F.; Ye, X. Y.; Zhang, G. Q.; Liu, Q. H.; Sha, O.; Lin, P.; Ki, C.; Bekhit, A. A.; Bekhit, A. E. D.; Wan, D. C. C.; Ye, X. J.; Xia, J.; Ng, T. B. Antifungal and antiviral products of marine organisms. Appl. Microbiol. Biotechnol. 2014, 98, 3475-3494.  doi: 10.1007/s00253-014-5575-0

    6. [6]

      Kooa, H.; Allanb, R. N.; Howlind, R. P.; Hall-Stoodleye, L.; Stoodley, P. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740-755.  doi: 10.1038/nrmicro.2017.99

    7. [7]

      Kim, S. K.; Lee, J. H. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 2016, 54, 71-85.  doi: 10.1007/s12275-016-5528-7

    8. [8]

      Jian, J. R.; Jie, Y. S.; Mei, T. L.; Ai, X. S.; Rong, X. Z.; Fang, L. S.; Hua, Y. J.; Quan, R. L.; Jie, Z. A biomimetic surface for infection-resistance through assembly of metal-phenolic networks. Chinese J. Polym. Sci. 2018, 36, 576-583.  doi: 10.1007/s10118-018-2032-z

    9. [9]

      Vögeling, H.; Pinnapireddy, S. R.; Seitz, B.; Bakowsky, U. Indocyanine green loaded plga film coated coronary stents for photo-triggered in situ biofilm eradication. Colloid Interface Sci. Commun. 2018, 27, 35-39.  doi: 10.1016/j.colcom.2018.10.002

    10. [10]

      Reffuveille, F.; Fuente-Núñez, C. D. L.; Mansour, S.; Hancock, R. E. W. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob. Agents Chemother. 2014, 58, 5363-5371.  doi: 10.1128/AAC.03163-14

    11. [11]

      Uppu, D. S. S. M.; Konai, M. M.; Sarkar, P.; Samaddar, S.; Fensterseifer, I. C. M.; Farias-Junior, C.; Krishnamoorthy, P.; Shome, B. R.; Franco, O. v. L.; Haldar, J. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards gram-negative bacteria. PLoS One 2017, 12, 1-30.

    12. [12]

      Li, X. H.; Lee, J. H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 2017, 55, 753-766.  doi: 10.1007/s12275-017-7274-x

    13. [13]

      Amato, S. M.; Fazen, C. H.; Henry, T. C.; Mok, W. K.; Orman, M. A.; Sandvik, E. L.; Volzing, K. G.; Brynildsen, M. The role of metabolism in bacterial persistence. Front. Microbiol. 2014, 5, 1-9.

    14. [14]

      Balaban, N. Q.; Gerdes, K.; Lewis, K.; McKinney, J. D. A problem of persistence: Still more questions than answers? Nat. Rev. Microbiol. 2013, 11, 587-591.

    15. [15]

      Kumagai, Y.; Matsuo, J.; Cheng, Z.; Yoshihiro; Hayakawa; Rikihisa, Y. Cyclic dimeric GMP signaling regulates intracellular aggregation, sessility, and growth of Ehrlichia chaffeensis. Infect. Immun. 2011, 79, 3905-3912.  doi: 10.1128/IAI.05320-11

    16. [16]

      Lewis, K. Persister cells. Annu. Rev. Microbiol. 2010, 64, 357-372.  doi: 10.1146/annurev.micro.112408.134306

    17. [17]

      Balaban, N. Q.; Merrin, J.; Chait, R.; Kowalik, L.; Leibler, S. Bacterial persistence as a phenotypic switch. Science 2004, 305, 1622-1626.  doi: 10.1126/science.1099390

    18. [18]

      Jie, Z. Y.; Sheng, H. S.; Zhong, D. J. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239-1250.  doi: 10.1007/s10118-018-2156-1

    19. [19]

      Chua, S. L.; Yam, J. K. H.; Hao, P.; Adav, S. S.; Salido, M. M.; Liu, Y.; Givskov, M.; Sze, S. K.; Tolker-Nielsen, T.; Yang, L. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commun 2016, 7, 10750-10760.  doi: 10.1038/ncomms10750

    20. [20]

      Yang, Q.; Li, M.; Spiller, O. B.; Andrey, D. O.; Hinchliffe, P.; Li, H.; MacLean, C.; Niumsup, P.; Powell, L.; Pritchard, M.; Papkou, A.; Shen, Y.; Portal, E.; Sands, K.; Spencer, J.; Tansawai, U.; Thomas, D.; Wang, S.; Wang, Y.; Shen, J.; Walsh, T. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun 2017, 8, 2054-2066.  doi: 10.1038/s41467-017-02149-0

    21. [21]

      Zhao, D.; Xu, X. D.; Yuan, S. S.; Yan, S. J.; Wang, X. H.; Luan, S. F.; Yin, J. H. Fouling-resistant behavior of liquid-infused porous slippery surfaces. Chinese J. Polym. Sci. 2017, 35, 887-896.  doi: 10.1007/s10118-017-1930-9

    22. [22]

      Wu, J.; Zhang, C.; Xu, S.; Pang, X.; Cai, G.; Wang, J. Preparation of zwitterionic polymer-functionalized cotton fabrics and the performance of anti-biofouling and long-term biofilm resistance. Colloid Interface Sci. Commun. 2018, 24, 98-104.  doi: 10.1016/j.colcom.2018.02.001

    23. [23]

      Hancock, R. E. W.; Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551-1557.  doi: 10.1038/nbt1267

    24. [24]

      Nijnik, A.; Hancock, R. E. W. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg. Health Threats J. 2009, 2, (e1): 1-7.

    25. [25]

      Yang, Y.; Cai, Z.; Huang, Z.; Tang, X.; Zhang, X. Antimicrobial cationic polymers: From structural design to functional control. Polym. J. 2017, 50, 33-44.

    26. [26]

      Brogden, K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238-250.

    27. [27]

      Liu, S. P.; Zhou, L.; Lakshminarayanan, R.; Beuerman, R. W. Multivalent antimicrobial peptides as therapeutics: Design principles and structural diversities. Int. J. Pept. Res. Ther. 2010, 16, 199-213.  doi: 10.1007/s10989-010-9230-z

    28. [28]

      Lam, S. J.; Wong, E. H. H.; O’Brien-Simpson, N. M.; Pantarat, N.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G. Bionano interaction study on antimicrobial star-shaped peptide polymer nanoparticles. ACS Appl Mater Interfaces 2016, 8, 33446-33456.  doi: 10.1021/acsami.6b11402

    29. [29]

      Cuthbert, T. J.; Hisey, B.; Harrison, T. D.; Trant, J. F.; Gillies, E. R.; Ragogna, P. J. Surprising antibacterial activity and selectivity of hydrophilic polyphosphoniums featuring sugar and hydroxy substituents. Angew. Chem. Int. Ed. 2018, 57, 12707-12710.  doi: 10.1002/anie.201806412

    30. [30]

      Li, P.; Zhou, C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H.; Chan-Park, M. B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130-4137.  doi: 10.1002/adma.201104186

    31. [31]

      Ong, Z. Y.; Wiradharma, N.; Yang, Y. Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv. Drug Delivery Rev. 2014, 78, 28-45.  doi: 10.1016/j.addr.2014.10.013

    32. [32]

      Sang, P.; Shi, Y.; Teng, P.; Cao, A.; Xu, H.; Li, Q.; Cai, J. Antimicrobial AApeptides. Curr. Top. Med. Chem. 2017, 17, 1266-1279.  doi: 10.2174/1568026616666161018145945

    33. [33]

      Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.; Epand, R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 2007, 129, 15474-15476.  doi: 10.1021/ja077288d

    34. [34]

      Yang. L. H.; Gordon.V. D.; Mishra. A.; Som. A.; Purdy K. R.; Davis. M. A.; Tew. G. N.; Gerard C. L. W. Synthetic antimicrobial oligomers induce a composition-dependent topological transition in membranes. J. Am. Chem. Soc. 2007, 129, 12141-12147.  doi: 10.1021/ja072310o

    35. [35]

      Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.; sslein, K. N.; Tew, G. N. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: A molecular construction kit approach. J. Am. Chem. Soc. 2008, 130, 9836-9843.  doi: 10.1021/ja801662y

    36. [36]

      Tew, G. N.; Scott, R. W.; Klein, M. L.; Degrado, W. F. De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Acc. Chem. Res. 2010, 43, 30-39.  doi: 10.1021/ar900036b

    37. [37]

      Liu, R.; Chen, X.; Falk, S. P.; Mowery, B. P.; Karlsson, A. J.; Weisblum, B.; Palecek, S. P.; Masters, K. S.; Gellman, S. H. Structure-activity relationships among antifungal Nylon-3 polymers: Identification of materials active against drug-resistant strains of Candida albicans. J. Am. Chem. Soc. 2014, 136, 4333-4342.  doi: 10.1021/ja500036r

    38. [38]

      Qian, Y.; Qi, F.; Chen, Q.; Zhang, Q.; Qiao, Z.; Zhang, S.; Wei, T.; Yu, Q.; Yu, S.; Mao, Z.; Gao, C.; Ding, Y.; Cheng, Y.; Jin, C.; Xie, H.; Liu, R. Surface modified with a host defense peptide-mimicking β-peptide polymer kills bacteria on contact with high efficacy. ACS Appl. Mater. Interfaces 2018, 10, 15395-15400.  doi: 10.1021/acsami.8b01117

    39. [39]

      Zhang. D.; Qian. Y.; Zhang. S.; Ma. P.; Zhang. Q.; Shao. N.; Qi, F.; Xie. J.; Dai. C.; Zhou. R.; Qiao. Z.; Zhang. W.; Sheng, C.; Runhui, L. α-β Chimeric polypeptide molecular brushes display potent activity against superbugs-methicillin resistant Staphylococcus aureus. Sci. China Mater. 2018, 21, 1-7.

    40. [40]

      Verduzco, R.; Li, X.; Peseka, S. L.; Stein, G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 2015, 44, 2405-2420.  doi: 10.1039/C4CS00329B

    41. [41]

      Zhang, M.; Müller, A. H. E. Cylindrical polymer brushes. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3461-3481.  doi: 10.1002/(ISSN)1099-0518

    42. [42]

      Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 2008, 33, 759-785.  doi: 10.1016/j.progpolymsci.2008.05.001

    43. [43]

      Lu, X.; Tran, T.-H.; Jia, F.; Tan, X.; Davis, S.; Krishnan, S.; Amiji, M. M.; Zhang, K. Providing oligonucleotides with steric selectivity by brush-polymer-assisted compaction. J. Am. Chem. Soc. 2015, 137, 12466-12469.  doi: 10.1021/jacs.5b08069

    44. [44]

      Wang, J.; Lu, H.; Ren, Y.; Zhang, Y.; Morton, M.; Cheng, J.; Lin, Y. Interrupted helical structure of grafted polypeptides in brush-like macromolecules. Macromolecules 2011, 44, 8699-8708.  doi: 10.1021/ma201833b

    45. [45]

      Zhang, Y.; Yin, Q.; Lu, H.; Xia, H.; Lin, Y.; Cheng, J. PEG-polypeptide dual brush block copolymers: Synthesis and application in nanoparticle surface PEGylation. ACS Macro Lett. 2013, 2, 809-813.  doi: 10.1021/mz4003672

    46. [46]

      Li, Z.; Ma, J.; Cheng, C.; Zhang, K.; Wooley, K. L., Synthesis of hetero-grafted amphiphilic diblock molecular brushes and their self-assembly in aqueous medium. Macromolecules 2010, 43, 1182-1184.  doi: 10.1021/ma902513n

    47. [47]

      Fan, J.; Borguet, Y. P.; Su, L.; Nguyen, T. P.; Wang, H.; He, X.; Zou, J.; Woole, K. L. Two-dimensional controlled syntheses of polypeptide molecular brushes via N-carboxyanhydride ring-opening polymerization and ring-opening metathesis polymerization. ACS Macro Lett. 2017, 6, 1031-1035.  doi: 10.1021/acsmacrolett.7b00603

    48. [48]

      Qiang, G.; Meng, Y.; Yajuan, S.; Meihua, X.; Xin, Z.; Peng, L.; Peter, X. M. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 2017, 51, 112-124.  doi: 10.1016/j.actbio.2017.01.061

    49. [49]

      Elshaarawya, R. F. M.; Refaeec, A. A.; El-Sawi, E. A. Pharmacological performance of novel poly-(ionic liquid)-grafted chitosan-N-salicylidene Schiff bases and their complexes. Carbohydr. Polym. 2016, 146, 376-387.  doi: 10.1016/j.carbpol.2016.03.017

    50. [50]

      Rahman, M. A.; Bam, M.; Luat, E.; Jui, M. S.; Ganewatta, M. S.; Shokfai, T.; Nagarkatti, M.; Decho, A. W.; Tang, C. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 2018, 9, 5231-5240.  doi: 10.1038/s41467-018-07651-7

    51. [51]

      Vincek, M. K.; Mor, A.; Gorgieva, S.; Kokol, V. Antibacterial activity and cytotoxycity of gelatine-conjugated lysine-based peptides. J. Biomed. Mater. Res., Part A 2017, 105, 3110-3126.  doi: 10.1002/jbm.a.36164

    52. [52]

      Yao, D.; Guo, Y.; Chen, S.; Tang, J.; Chen, Y. Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer 2013, 54, 3485-3491.  doi: 10.1016/j.polymer.2013.05.005

    53. [53]

      Yang, C.; Ding, X.; Ono, R. J.; Lee, H.; Hsu, L. Y.; Tong, Y. W.; Hedrick, J.; Yang, Y. Y. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating. Adv. Mater. 2014, 26, 7346-7351.  doi: 10.1002/adma.v26.43

    54. [54]

      Mohamed, M. F.; Brezden, A.; Mohammad, H.; Chmielewski, J.; Seleem, M. N. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci. Rep. 2017, 7, 6953.  doi: 10.1038/s41598-017-07440-0

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    5. [5]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    6. [6]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    7. [7]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    8. [8]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    9. [9]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    10. [10]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    11. [11]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    12. [12]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    13. [13]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    14. [14]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    15. [15]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    16. [16]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    17. [17]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    18. [18]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    19. [19]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    20. [20]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

Metrics
  • PDF Downloads(0)
  • Abstract views(940)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return