Citation: Kai Guo, Yu Jiang, Ying Sui, Yun-Feng Deng, Yan-Hou Geng. Dimethylacetamide-promoted Direct Arylation Polycondensation of 6,6′-Dibromo-7,7′-diazaisoindigo and (E)-1,2-bis(3,4-difluorothien-2-yl)ethene toward High Molecular Weight n-Type Conjugated Polymers[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1099-1104. doi: 10.1007/s10118-019-2277-1 shu

Dimethylacetamide-promoted Direct Arylation Polycondensation of 6,6′-Dibromo-7,7′-diazaisoindigo and (E)-1,2-bis(3,4-difluorothien-2-yl)ethene toward High Molecular Weight n-Type Conjugated Polymers

  • A highly efficient and eco-friendly protocol for the synthesis of an alternating copolymer poly(7,7′-diazaisoindigo-alt-(E)-1,2-bis(3,4-difluorothien-2-yl)ethene) (PAIID-4FTVT) via direct arylation polycondensation (DArP) is presented. Through detailed study, we found that the inhibitory effect of 7,7′-diazaisoindigo on DArP stemmed from the coordination of N atom with catalyst can be overcome by using dimethylacetamide (DMAc) as the co-solvent. Thus, PAIID-4FTVT with number-average molecular weight (Mn) > 100 kDa was synthesized via DArP by optimizing the content of DMAc. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy revealed that PAIID-4FTVT was defect-free. Top gate and bottom contact (TG/BC) organic thin-film transistors (OTFTs) were fabricated to characterize the semiconducting properties of the polymers. PAIID-4FTVT displayed unipolar n-type characteristics with the electron mobility (μe) strongly dependent on Mn. The highest μe up to 0.25 cm2·V–1·s–1 was achieved with the high molecular weight sample.
  • 加载中
    1. [1]

      Rudenko, A. E.; Thompson, B. C. Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 135-147.  doi: 10.1002/pola.27279

    2. [2]

      Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225-14274.  doi: 10.1021/acs.chemrev.6b00498

    3. [3]

      Bura, T.; Blaskovits, J. T.; Leclerc, M. Direct (hetero) arylation polymerization: trends and perspectives. J. Am. Chem. Soc. 2016, 138, 10056-10071.  doi: 10.1021/jacs.6b06237

    4. [4]

      Bohra, H.; Wang, M. Direct C-H arylation: A " greener” approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A 2017, 5, 11550-11571.  doi: 10.1039/C7TA00617A

    5. [5]

      Wakioka, M.; Ozawa, F. Highly efficient catalysts for direct arylation polymerization (DArP). Asian J. Org. Chem. 2018, 7, 1206-1216.  doi: 10.1002/ajoc.v7.7

    6. [6]

      Gao, Y.; Zhang, X.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. High mobility ambipolar diketopyrrolopyrrole‐based conjugated polymer synthesized via direct arylation polycondensation. Adv. Mater. 2015, 27, 6753-6759.  doi: 10.1002/adma.201502896

    7. [7]

      Gao, Y.; Deng, Y.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo. Adv. Mater. 2017, 29, 1606217.  doi: 10.1002/adma.201606217

    8. [8]

      Song, H.; Deng, Y.; Gao, Y.; Jiang, Y.; Tian, H.; Yan, D.; Geng, Y.; Wang, F. Donor-acceptor conjugated polymers based on indacenodithiophene derivative bridged diketopyrrolopyrroles: Synthesis and semiconducting properties. Macromolecules 2017, 50, 2344-2353.  doi: 10.1021/acs.macromol.6b02781

    9. [9]

      Gao, Y.; Bai, J.; Sui, Y.; Han, Y.; Deng, Y.; Tian, H.; Geng, Y.; Wang, F. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: Influence of thiophene moieties and side chains. Macromolecules 2018, 51, 8752-8760.  doi: 10.1021/acs.macromol.8b01112

    10. [10]

      Guo, K.; Bai, J.; Jiang, Y.; Wang, Z.; Sui, Y.; Deng, Y.; Han, Y.; Tian, H.; Geng, Y. Diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors. Adv. Funct. Mater. 2018, 1801097.

    11. [11]

      Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Diazaisoindigo-based polymers with high-performance charge-transport properties: From computational screening to experimental characterization. Chem. Mater. 2016, 28, 2209-2218.  doi: 10.1021/acs.chemmater.6b00154

    12. [12]

      Randell, N. M.; Kelly, T. L. Recent advances in isoindigo-inspired organic semiconductors. Chem. Rec. 2018.  doi: 10.1002/tcr.201800135

    13. [13]

      Wagaw, S.; Buchwald, S. L. The synthesis of aminopyridines: a method employing palladium-catalyzed carbon-nitrogen bond formation. J. Org. Chem. 1996, 61, 7240-7241.  doi: 10.1021/jo9612739

    14. [14]

      Zhao, Y.; Nett, A. J.; McNeil, A. J.; Zimmerman, P. M. Computational mechanism for initiation and growth of poly (3-hexylthiophene) using palladium N-heterocyclic carbene precatalysts. Macromolecules 2016, 49, 7632-7641.  doi: 10.1021/acs.macromol.6b01648

    15. [15]

      Shi, Y.; Guo, H.; Qin, M.; Wang, Y.; Zhao, J.; Sun, H.; Wang, H.; Wang, Y.; Zhou, X.; Facchetti, A.; Xinhui, L.; Zhou, M.; Guo, X. Imide-functionalized thiazole-based polymer semiconductors: synthesis, structure-property correlations, charge carrier polarity, and thin-film transistor performance. Chem. Mater. 2018, 30, 7988-8001.  doi: 10.1021/acs.chemmater.8b03670

    16. [16]

      Lee, J. A.; Luscombe, C. K. Dual-catalytic Ag-Pd system for direct arylation polymerization to synthesize poly (3-hexylthiophene). ACS Macro Lett. 2018, 7, 767-771.  doi: 10.1021/acsmacrolett.8b00429

    17. [17]

      Lu, W.; Kuwabara, J.; Kanbara, T. Synthesis of π‐conjugated polymer consisting of pyrrole and fluorene units by Ru-catalyzed site-selective direct arylation polycondensation. Macromol. Rapid Commun. 2013, 34, 1151-1156.  doi: 10.1002/marc.201300303

    18. [18]

      Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M. Defect-free naphthalene diimide bithiophene copolymers with controlled molar mass and high performance via direct arylation polycondensation. J. Am. Chem. Soc. 2015, 137, 6705-6711.  doi: 10.1021/jacs.5b03355

    19. [19]

      Lombeck, F.; Komber, H.; Gorelsky, S. I.; Sommer, M. Identifying homocouplings as critical side reactions in direct arylation polycondensation. ACS Macro Lett. 2014, 3, 819-823.  doi: 10.1021/mz5004147

    20. [20]

      Wang, Q.; Qu, Y.; Tian, H.; Geng, Y.; Wang, F. Iterative binomial synthesis of monodisperse polyfluorenes up to 64-mers and their chain-length-dependent properties. Macromolecules 2011, 44, 1256-1260.  doi: 10.1021/ma102954h

    21. [21]

      Aldrich, T. J.; Dudnik, A. S.; Eastham, N. D.; Manley, E. F.; Chen, L. X.; Chang, R. P.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. Suppressing defect formation pathways in the direct c-h Arylation Polymerization of Photovoltaic Copolymers. Macromolecules 2018, 51, 9140-9155.  doi: 10.1021/acs.macromol.8b02297

    22. [22]

      Bartelt, J. A.; Douglas, J. D.; Mateker, W. R.; Labban, A. E.; Tassone, C. J.; Toney, M. F.; Fréchet, J. M.; Beaujuge, P. M.; McGehee, M. D. Controlling solution‐phase polymer aggregation with molecular weight and solvent additives to optimize polymer‐fullerene bulk heterojunction solar cells. Adv. Energy Mater. 2014, 4, 1301733.  doi: 10.1002/aenm.201301733

    23. [23]

      Xiao, Z.; Sun, K.; Subbiah, J.; Qin, T.; Lu, S.; Purushothaman, B.; Jones, D. J.; Holmes, A. B.; Wong, W. W. Effect of molecular weight on the properties and organic solar cell device performance of a donor-acceptor conjugated polymer. Polym. Chem. 2015, 6, 2312-2318.  doi: 10.1039/C4PY01631A

    24. [24]

      Vezie, M. S.; Few, S.; Meager, I.; Pieridou, G.; Dörling, B.; Ashraf, R. S.; Goñi, A. R.; Bronstein, H.; McCulloch, I.; Hayes, S. C.; Campoy-Quiles, M.; Nelson, J. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 2016, 15, 746.  doi: 10.1038/nmat4645

    25. [25]

      Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C.-A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.; S. Ong, B. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2012, 2, 754.  doi: 10.1038/srep00754

    26. [26]

      Gasperini, A.; Sivula, K. Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly (thieno) thiophene. Macromolecules 2013, 46, 9349-9358.  doi: 10.1021/ma402027v

    27. [27]

      Tong, M.; Cho, S.; Rogers, J. T.; Schmidt, K.; Hsu, B. B.; Moses, D.; Coffin, R. C.; Kramer, E. J.; Bazan, G. C.; Heeger, A. J. Higher molecular weight leads to improved photoresponsivity, charge transport and interfacial ordering in a narrow bandgap semiconducting polymer. Adv. Funct. Mater. 2010, 20, 3959-3965.  doi: 10.1002/adfm.201001271

    28. [28]

      Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K. Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 2011, 133, 2605-2612.  doi: 10.1021/ja108861q

    29. [29]

      Zheng, Y. Q.; Yao, Z. F.; Lei, T.; Dou, J. H.; Yang, C. Y.; Zou, L.; Meng, X.; Ma, W.; Wang, J. Y.; Pei, J. Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solid-state morphology and charge-transport properties. Adv. Mater. 2017, 29, 1701072.  doi: 10.1002/adma.201701072

  • 加载中
    1. [1]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    2. [2]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    3. [3]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    4. [4]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    5. [5]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      . . University Chemistry, 2024, 39(7): 0-0.

    9. [9]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    10. [10]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    11. [11]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    12. [12]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    13. [13]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    14. [14]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    15. [15]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    16. [16]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    17. [17]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    18. [18]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    19. [19]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    20. [20]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

Metrics
  • PDF Downloads(0)
  • Abstract views(580)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return