-
[1]
Rudenko, A. E.; Thompson, B. C. Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 135-147.
doi: 10.1002/pola.27279
-
[2]
Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225-14274.
doi: 10.1021/acs.chemrev.6b00498
-
[3]
Bura, T.; Blaskovits, J. T.; Leclerc, M. Direct (hetero) arylation polymerization: trends and perspectives. J. Am. Chem. Soc. 2016, 138, 10056-10071.
doi: 10.1021/jacs.6b06237
-
[4]
Bohra, H.; Wang, M. Direct C-H arylation: A " greener” approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A 2017, 5, 11550-11571.
doi: 10.1039/C7TA00617A
-
[5]
Wakioka, M.; Ozawa, F. Highly efficient catalysts for direct arylation polymerization (DArP). Asian J. Org. Chem. 2018, 7, 1206-1216.
doi: 10.1002/ajoc.v7.7
-
[6]
Gao, Y.; Zhang, X.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. High mobility ambipolar diketopyrrolopyrrole‐based conjugated polymer synthesized via direct arylation polycondensation. Adv. Mater. 2015, 27, 6753-6759.
doi: 10.1002/adma.201502896
-
[7]
Gao, Y.; Deng, Y.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo. Adv. Mater. 2017, 29, 1606217.
doi: 10.1002/adma.201606217
-
[8]
Song, H.; Deng, Y.; Gao, Y.; Jiang, Y.; Tian, H.; Yan, D.; Geng, Y.; Wang, F. Donor-acceptor conjugated polymers based on indacenodithiophene derivative bridged diketopyrrolopyrroles: Synthesis and semiconducting properties. Macromolecules 2017, 50, 2344-2353.
doi: 10.1021/acs.macromol.6b02781
-
[9]
Gao, Y.; Bai, J.; Sui, Y.; Han, Y.; Deng, Y.; Tian, H.; Geng, Y.; Wang, F. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: Influence of thiophene moieties and side chains. Macromolecules 2018, 51, 8752-8760.
doi: 10.1021/acs.macromol.8b01112
-
[10]
Guo, K.; Bai, J.; Jiang, Y.; Wang, Z.; Sui, Y.; Deng, Y.; Han, Y.; Tian, H.; Geng, Y. Diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors. Adv. Funct. Mater. 2018, 1801097.
-
[11]
Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Diazaisoindigo-based polymers with high-performance charge-transport properties: From computational screening to experimental characterization. Chem. Mater. 2016, 28, 2209-2218.
doi: 10.1021/acs.chemmater.6b00154
-
[12]
Randell, N. M.; Kelly, T. L. Recent advances in isoindigo-inspired organic semiconductors. Chem. Rec. 2018.
doi: 10.1002/tcr.201800135
-
[13]
Wagaw, S.; Buchwald, S. L. The synthesis of aminopyridines: a method employing palladium-catalyzed carbon-nitrogen bond formation. J. Org. Chem. 1996, 61, 7240-7241.
doi: 10.1021/jo9612739
-
[14]
Zhao, Y.; Nett, A. J.; McNeil, A. J.; Zimmerman, P. M. Computational mechanism for initiation and growth of poly (3-hexylthiophene) using palladium N-heterocyclic carbene precatalysts. Macromolecules 2016, 49, 7632-7641.
doi: 10.1021/acs.macromol.6b01648
-
[15]
Shi, Y.; Guo, H.; Qin, M.; Wang, Y.; Zhao, J.; Sun, H.; Wang, H.; Wang, Y.; Zhou, X.; Facchetti, A.; Xinhui, L.; Zhou, M.; Guo, X. Imide-functionalized thiazole-based polymer semiconductors: synthesis, structure-property correlations, charge carrier polarity, and thin-film transistor performance. Chem. Mater. 2018, 30, 7988-8001.
doi: 10.1021/acs.chemmater.8b03670
-
[16]
Lee, J. A.; Luscombe, C. K. Dual-catalytic Ag-Pd system for direct arylation polymerization to synthesize poly (3-hexylthiophene). ACS Macro Lett. 2018, 7, 767-771.
doi: 10.1021/acsmacrolett.8b00429
-
[17]
Lu, W.; Kuwabara, J.; Kanbara, T. Synthesis of π‐conjugated polymer consisting of pyrrole and fluorene units by Ru-catalyzed site-selective direct arylation polycondensation. Macromol. Rapid Commun. 2013, 34, 1151-1156.
doi: 10.1002/marc.201300303
-
[18]
Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M. Defect-free naphthalene diimide bithiophene copolymers with controlled molar mass and high performance via direct arylation polycondensation. J. Am. Chem. Soc. 2015, 137, 6705-6711.
doi: 10.1021/jacs.5b03355
-
[19]
Lombeck, F.; Komber, H.; Gorelsky, S. I.; Sommer, M. Identifying homocouplings as critical side reactions in direct arylation polycondensation. ACS Macro Lett. 2014, 3, 819-823.
doi: 10.1021/mz5004147
-
[20]
Wang, Q.; Qu, Y.; Tian, H.; Geng, Y.; Wang, F. Iterative binomial synthesis of monodisperse polyfluorenes up to 64-mers and their chain-length-dependent properties. Macromolecules 2011, 44, 1256-1260.
doi: 10.1021/ma102954h
-
[21]
Aldrich, T. J.; Dudnik, A. S.; Eastham, N. D.; Manley, E. F.; Chen, L. X.; Chang, R. P.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. Suppressing defect formation pathways in the direct c-h Arylation Polymerization of Photovoltaic Copolymers. Macromolecules 2018, 51, 9140-9155.
doi: 10.1021/acs.macromol.8b02297
-
[22]
Bartelt, J. A.; Douglas, J. D.; Mateker, W. R.; Labban, A. E.; Tassone, C. J.; Toney, M. F.; Fréchet, J. M.; Beaujuge, P. M.; McGehee, M. D. Controlling solution‐phase polymer aggregation with molecular weight and solvent additives to optimize polymer‐fullerene bulk heterojunction solar cells. Adv. Energy Mater. 2014, 4, 1301733.
doi: 10.1002/aenm.201301733
-
[23]
Xiao, Z.; Sun, K.; Subbiah, J.; Qin, T.; Lu, S.; Purushothaman, B.; Jones, D. J.; Holmes, A. B.; Wong, W. W. Effect of molecular weight on the properties and organic solar cell device performance of a donor-acceptor conjugated polymer. Polym. Chem. 2015, 6, 2312-2318.
doi: 10.1039/C4PY01631A
-
[24]
Vezie, M. S.; Few, S.; Meager, I.; Pieridou, G.; Dörling, B.; Ashraf, R. S.; Goñi, A. R.; Bronstein, H.; McCulloch, I.; Hayes, S. C.; Campoy-Quiles, M.; Nelson, J. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 2016, 15, 746.
doi: 10.1038/nmat4645
-
[25]
Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C.-A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.; S. Ong, B. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2012, 2, 754.
doi: 10.1038/srep00754
-
[26]
Gasperini, A.; Sivula, K. Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly (thieno) thiophene. Macromolecules 2013, 46, 9349-9358.
doi: 10.1021/ma402027v
-
[27]
Tong, M.; Cho, S.; Rogers, J. T.; Schmidt, K.; Hsu, B. B.; Moses, D.; Coffin, R. C.; Kramer, E. J.; Bazan, G. C.; Heeger, A. J. Higher molecular weight leads to improved photoresponsivity, charge transport and interfacial ordering in a narrow bandgap semiconducting polymer. Adv. Funct. Mater. 2010, 20, 3959-3965.
doi: 10.1002/adfm.201001271
-
[28]
Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K. Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 2011, 133, 2605-2612.
doi: 10.1021/ja108861q
-
[29]
Zheng, Y. Q.; Yao, Z. F.; Lei, T.; Dou, J. H.; Yang, C. Y.; Zou, L.; Meng, X.; Ma, W.; Wang, J. Y.; Pei, J. Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solid-state morphology and charge-transport properties. Adv. Mater. 2017, 29, 1701072.
doi: 10.1002/adma.201701072