Citation: Ji-Li Zhao, Hong-Wei Pan, Hui-Li Yang, Jun-Jia Bian, Hui-Liang Zhang, Ge Gao, Li-Song Dong. Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly(propylene carbonate) Polyurethane Ternary Blends[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1273-1282. doi: 10.1007/s10118-019-2276-2 shu

Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly(propylene carbonate) Polyurethane Ternary Blends

  • Corresponding author: Hui-Liang Zhang, hlzhang@ciac.ac.cn Ge Gao, gaoge@jlu.edu.cn
  • Received Date: 1 March 2019
    Revised Date: 8 April 2019
    Accepted Date: 18 April 2019
    Available Online: 20 June 2019

  • Polylactide (PLA), methyl methacrylate-butadiene-styrene copolymer (MBS), and poly(propylene carbonate) polyurethane (PPCU) were blended and subjected to blown film process. The rheological, mechanical, morphological, thermal, and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied. Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA. The impact strength of 50/10/40 PLA/MBS/PPCU blend (74.7 kJ/m2) was about 7.5 times higher than that of the neat PLA (10.8 kJ/m2), and the elongation at break of 50/10/40 PLA/MBS/PPCU blend (276.5%) was higher by about 45 times that of PLA (6.2%). The tear strength of PLA/MBS/PPCU films was 20 kN/m higher than that of PLA, and the elongation at break (MD/TD) of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%, whereas that of PLA was only 2.7%/3.0%. POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS. With increasing PPCU content from 5% to 20%, the density of spherulite nucleation increased and the size of crystalline particles decreased continuously, but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30% to 40%. The PLA/MBS/PPCU films exhibited excellent mechanical properties, which expanded the application range of these biodegradable films.
  • 加载中
    1. [1]

      Wang, H.; Qiu, Z. Crystallization behaviors of biodegradable poly(L-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim. Acta. 2011, 526, 229-236.  doi: 10.1016/j.tca.2011.10.006

    2. [2]

      Pan, P.; Zhu, B.; Kai, W.; Dong, T.; Inoue, Y. Polymorphic transition in disordered poly(L-lactic acid) crystals induced by annealing at elevated temperatures. Macromolecules 2008, 41, 4296-4304.  doi: 10.1021/ma800343g

    3. [3]

      Martin, L.; Avérous, L. Poly(laxtic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209-6219.  doi: 10.1016/S0032-3861(01)00086-6

    4. [4]

      Rahul, M.; Amol, V.; Douglas, E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338-356.  doi: 10.1016/j.progpolymsci.2009.12.003

    5. [5]

      Pillin, I.; Montrelay, N.; Grohens, Y. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer 2006, 47, 4676-4682.  doi: 10.1016/j.polymer.2006.04.013

    6. [6]

      Harada, M.; Ohya, T.; Iida, K.; Hayashi, H.; Hirano, K.; Fukuda, H. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci. 2007, 106, 1813-1820.  doi: 10.1002/(ISSN)1097-4628

    7. [7]

      Oyama, H. T. Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 2009, 50, 747-751.  doi: 10.1016/j.polymer.2008.12.025

    8. [8]

      Zhao, Y.; Zhang, Y.; Li, Z. L.; Pan, H. W.; Dong, Q. L.; Han, L. J.; Zhang, H. L.; Dong, L. S. Rheology, mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly(ethylene octene) toughened poly(lactic acid) blends. Korean J. Chem. Eng. 2016, 33, 1104-1114.  doi: 10.1007/s11814-015-0202-z

    9. [9]

      Song, W. J.; Liu, H. Z.; Chen, F.; Zhang, J. W. Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending. Polymer 2012, 53, 2476-2484.  doi: 10.1016/j.polymer.2012.03.050

    10. [10]

      Sun, S. L.; Zhang, M. Y.; Zhang, H. X.; Zhang, X. M. Polylactide toughening with epoxy-functionalized grafted acrylonitrile-butadiene-styrene particles. J. Appl. Polym. Sci. 2011, 122, 2992-2999.  doi: 10.1002/app.34111

    11. [11]

      Meng, B.; Deng, J.; Liu, Q.; Wu, Z.; Yang, W. Transparent and ductile poly(lactic acid)/poly(butyl acrlate)(PBA) blends: structure and properties. Eur. Polym. J. 2012, 48, 127-135.  doi: 10.1016/j.eurpolymj.2011.10.009

    12. [12]

      Lee, S.; Lee, J. W. Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate). Korea-Aust. Rheol. J. 2005, 2, 71-77.

    13. [13]

      Yang, J.; Pan, H. W.; Li, X.; Sun, S. L.; Zhang, H. L.; Dong, L. S. Study on mechanical, thermal properties and crystallization behavior of poly(lactic acid)/thermoplastic poly(propylene carbonate) polyurethane blends. RSC. Adv. 2017, 7, 46183-46194.  doi: 10.1039/C7RA07424G

    14. [14]

      Liang, H. Y.; Hao, Y. P.; Liu, S. R.; Zhang, H. L.; Li, Y. S.; Dong, L. S.; Zhang, H. X. Thermal, rheological, and mechanical properties of polylactide/poly(diethylene glycl adipate). Polym. Bull. 2013, 70, 3487-3500.  doi: 10.1007/s00289-013-1035-8

    15. [15]

      Hao, Y. P.; Yang, H. L., Zhang, G. B.; Bai, Y. G.; Gao, G.; Dong, L. S.Diethylene glycol monobutyl ether adipate as a novel plasticizer for biodegradable polylactide. Polym. Bull. 2016, 73, 3143-3161.  doi: 10.1007/s00289-016-1646-y

    16. [16]

      Liang, H. Y.; Hao, Y. P.; Bian, J. J.; Zhang, H. L.; Dong, L. S.; Zhang HX. Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends. Polym. Eng. Sci. 2015, 2, 386-396.  doi: 10.1002/pen.23893

    17. [17]

      Zhang, H. L.; Liang, H. Y.; Bian, J. J.; Hao, Y. P.; Han, L.Y.; Wang, X. M.; Zhang, G. B.; Liu, S. R.; Dong, L. S. Influence of acrylic impact modifier on plasticized polylactide blown films. Polym. Int. 2014, 63, 1076-1084.  doi: 10.1002/pi.2014.63.issue-6

    18. [18]

      Lin, S. W.; Cheng, Y. Y. Miscibility and thermal and mechanical properties of melt-mixed poly(lactic acdi)/poly(trimethylene terephthlalte/(methyl methacrylate)-butadiene-styrene copolymer blends. J. Vinyl. Addit. Techn. 2011, 1, 70-76.  doi: 10.1002/vnl.20253

    19. [19]

      Zhang, H. L.; Liu, N. N.; Ran, X. H.; Han, C.Y.; Han, L. J.; Zhuang, Y. G.; Dong, L. S. Toughening of polylactide by melt blending with methyl methacrylate-butadiend-styrene copolymer. J. Appl. Polym. Sci. 2012, 125, E550-E561.  doi: 10.1002/app.36952

    20. [20]

      Chen, Y. Y.; Liu, Z. X.; Han, S.; Han, J.; Jiang, D. Y. Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J. Appl. Polym. Sci. 2016, 133, 43667.  doi: 10.1002/app.43667

    21. [21]

      Ma, X. F.; Yu, J. G.; Wang, N. Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 94-101.  doi: 10.1002/(ISSN)1099-0488

    22. [22]

      Wu, D. F.; Zhang, Y. S.; Zhang, M.; Yu, M. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 2009, 10, 417-424.  doi: 10.1021/bm801183f

    23. [23]

      Wang, X. M.; Zhuang, Y. G.; Dong, L. S. Study of carbon black-filled poly(butylene succinate)/polylactide blend. J. Appl. Polym. Sci. 2012, 126, 1876-1884.  doi: 10.1002/app.v126.6

    24. [24]

      Finkenstadt, V. L.; Liu, C. K.; Cooke, P. H.; Liu, L. S.; Willett, J. L. Mechanical property characterization of plasticized sugar beet pulp and poly(Lactic acid) green composites using acoustic emission and confocal microscopy. J. Polym. Environ. 2008, 16, 19-26.  doi: 10.1007/s10924-008-0085-8

    25. [25]

      Sami, S.; Yildirim, E.; Yurtsever, M.; Yurtsever, E.; Yilgor, E.; Yilgor, I.; Wilkes, G. L. Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer 2014, 55, 4563-4576.  doi: 10.1016/j.polymer.2014.07.028

    26. [26]

      Marubayashi, H.; Asai, S.; Sumita, M. Complex crystal formation of poly(L-lactide) with solvent molecules. Macromolecules 2012, 45, 1384-1397.  doi: 10.1021/ma202324g

    27. [27]

      Bucknall, C. B.; Paul, D. R. Notched impact behavior of polymer blends: Part 1: New model for particle size dependence. Polymer 2009, 50, 5539-5548.  doi: 10.1016/j.polymer.2009.09.059

    28. [28]

      Bucknall, C. B.; "Deformation mechanisms in rubber-toughened polymers." in Polymer Blends, Vol. 2, Performance, Paul, D. R; Bucknall, C. B. Eds., Wiley, New York, 2000.

    29. [29]

      Bucknall, C. B.; Paul, D. R. Notched impact behaviour of polymer blends: Part 2: Dependence of critical particle size on rubber particle volume fraction. Polymer 2013, 54:320-329.  doi: 10.1016/j.polymer.2012.11.019

    30. [30]

      Lazzeri, A.; Bucknall, C. B. Dilatational bands in rubber-toughened polymers. J. Mater. Sci. 1993, 28, 6799-6808.  doi: 10.1007/BF00356433

    31. [31]

      Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid. Polym. Sci. 1973, 251, 980-990.  doi: 10.1007/BF01498927

    32. [32]

      Wu, T. M.; Wu, C. Y. Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. Stabil. 2006, 91, 2198-2204.  doi: 10.1016/j.polymdegradstab.2006.01.004

    33. [33]

      Bouapao, L.; Tsuji, H.; Tashiro, K.; Zhang, J. M.; Hanesaka, M. Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s. Polymer 2009, 50, 4007-4017.  doi: 10.1016/j.polymer.2009.06.040

    34. [34]

      Jalali, A.; Shahbikian, S.; Huneault, M.A.; Elkoun, S. Effect of molecular weight on the shear-induced crystallization of poly(lactic acid). Polymer 2017, 112, 393-401.  doi: 10.1016/j.polymer.2017.02.017

  • 加载中
    1. [1]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    2. [2]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    3. [3]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    4. [4]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    5. [5]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    6. [6]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    7. [7]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    8. [8]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    9. [9]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    10. [10]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    11. [11]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    12. [12]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    13. [13]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    14. [14]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    15. [15]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    16. [16]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    17. [17]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    18. [18]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    19. [19]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    20. [20]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

Metrics
  • PDF Downloads(0)
  • Abstract views(689)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return