Citation: Ting Li, Tian-Ze Zheng, Zhao-Xia Guo, Jun Xu, Bao-Hua Guo. A Well-defined Hierarchical Hydrogen Bonding Strategy to Polyureas with Simultaneously Improved Strength and Toughness[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1257-1266. doi: 10.1007/s10118-019-2275-3 shu

A Well-defined Hierarchical Hydrogen Bonding Strategy to Polyureas with Simultaneously Improved Strength and Toughness

  • A well-defined quadruple hydrogen bonding strategy involving dimerization of 2-ureido-4[1H]-pyrimidone (UPy) units is innovatively designed to prepare polyureas with high overall mechanical properties. Three polyureas containing different amounts of UPy units were synthesized by replacing a portion of isophorone diisocyanate (IPDI) with a UPy-derived diisocyanate. The formation of quadruple hydrogen bonds in hard segments via UPy dimers was confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties of the polyureas were evaluated by uniaxial tensile testing. Compared to the polyurea without UPy units, remarkable improvements in Young’s modulus, tensile strength, and toughness were simultaneously achieved when UPy units were incorporated. The mechanism behind the strong strengthening effect rooted in the stronger intermolecular forces among hard segments brought by the quadruple hydrogen bonds, which were stronger than the inherent bidentate and monodentate hydrogen bonds among urea groups, and the slower soft segmental dynamics reaveled by both increased Tg and relaxation time of the soft segments. The mechanism behind the strong toughening effect was ascribed to more effective energy dissipation brought by the quadruple hydrogen bonds that served as stronger sacrificial bonds upon deformation. This work may offer new insight into the design of polyurea elastomers with comprehensively improved mechanical properties.
  • 加载中
    1. [1]

      Roland, C. M.; Twigg, J. N.; Vu, Y.; Mott, P. H. High strain rate mechanical behavior of polyurea. Polymer 2007, 48, 574-578.  doi: 10.1016/j.polymer.2006.11.051

    2. [2]

      Sarva, S. S.; Deschanel, S.; Boyce, M. C.; Chen, W. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 2007, 48, 2208-2213.  doi: 10.1016/j.polymer.2007.02.058

    3. [3]

      Yi, J.; Boyce, M. C.; Lee, G. F.; Balizer, E. Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes. Polymer 2006, 47, 319-329.  doi: 10.1016/j.polymer.2005.10.107

    4. [4]

      Choi, T.; Fragiadakis, D.; Roland, C. M.; Runt, J. Microstructure and segmental dynamics of polyurea under uniaxial deformation. Macromolecules 2012, 45, 3581-3589.  doi: 10.1021/ma300128d

    5. [5]

      Li, T.; Xie, Z.; Xu, J.; Weng, Y.; Guo, B. H. Design of a self-healing cross-linked polyurea with dynamic cross-links based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 2018, 107, 249-257.  doi: 10.1016/j.eurpolymj.2018.08.005

    6. [6]

      Rinaldi, R. G.; Boyce, M. C.; Weigand, S. J.; Londono, D. J.; Guise, M. W. Microstructure evolution during tensile loading histories of a polyurea. J. Polym. Sci., Part A: Polym. Phys. 2011, 49, 1660-1671.  doi: 10.1002/polb.v49.23

    7. [7]

      Castagna, A. M.; Pangon, A.; Dillon, G. P.; Runt, J. Effect of thermal history on the microstructure of a poly(tetramethylene oxide)-based polyurea. Macromolecules 2013, 46, 6520-6527.  doi: 10.1021/ma400856w

    8. [8]

      Chao, L.; Ma, C.; Xie, Q.; Zhang, G. Self-repairing silicone coating for marine anti-biofouling. J. Mater. Chem. 2017, 5, 15855-15861.  doi: 10.1039/C7TA05241C

    9. [9]

      Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422-9441.  doi: 10.1002/anie.v52.36

    10. [10]

      Fragiadakis, D.; Gamache, R.; Bogoslovov, R. B.; Roland, C. M. Segmental dynamics of polyurea: Effect of stoichiometry. Polymer 2010, 51, 178–184.  doi: 10.1016/j.polymer.2009.11.028

    11. [11]

      Xuan, L.; Kuang, W.; Guo, B. Preparation of rubber/graphene oxide composites with in situ interfacial design. Polymer 2015, 56, 553-562.  doi: 10.1016/j.polymer.2014.11.048

    12. [12]

      Qiao, H.; Wang, R.; Yao, H.; Zhou, X.; Lei, W.; Hu, X.; Zhang, L. Preparation of graphene oxide/bio-based elastomer nanocomposites through polymer design and interface tailoring. Polym. Chem. 2015, 6, 6140-6151.  doi: 10.1039/C5PY00720H

    13. [13]

      Qian, X.; Song, L.; Yu, B.; Yang, W.; Wang, B.; Hu, Y.; Yuen, R. K. One-pot surface functionalization and reduction of graphene oxide with long-chain molecules: Preparation and its enhancement on the thermal and mechanical properties of polyurea. Chem. Eng. J. 2014, 236, 233-241.  doi: 10.1016/j.cej.2013.09.061

    14. [14]

      Qian, X.; Song, L.; Tai, Q.; Hu, Y.; Yuen, R. K. Graphite oxide/polyurea and graphene/polyurea nanocomposites: a comparative investigation on properties reinforcements and mechanism. Compos. Sci. Technol. 2013, 74, 228-234.  doi: 10.1016/j.compscitech.2012.11.018

    15. [15]

      Wu, C. L.; Zhang, M. Q.; Rong, M. Z.; Friedrich, K.; Technology Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 2005, 65, 635-645.  doi: 10.1016/j.compscitech.2004.09.004

    16. [16]

      Sánchez-Ferrer, A.; Rogez, D.; Martinoty, P. Synthesis and characterization of new polyurea elastomers by sol/gel chemistry. Macromol. Chem. Phys. 2010, 211, 1712-1721.  doi: 10.1002/macp.201000117

    17. [17]

      Bras, W.; Derbyshire, G. E.; Bogg, D.; Cooke, J.; Elwell, M. J.; Komanschek, B. U.; Naylor, S.; Ryan, A. J. Simultaneous studies of reaciton-kinetics and structure development in polymer processing. Science 1995, 267, 996-999.  doi: 10.1126/science.267.5200.996

    18. [18]

      Elwell, M. J.; Ryan, A. J.; Grünbauer, H. J. M.; Lieshout, H. C. V. In situ studies of structure development during the reactive processing of model flexible polyurethane foam systems using FT-IR SPECTROSCOPY, SYNCHrotron SAXS, and rheology. Macromolecules 1996, 212, 2960-2968.

    19. [19]

      Sami, S.; Yildirim, E.; Yurtsever, M.; Yurtsever, E.; Yilgor, E.; Yilgor, I.; Wilkes, G. L. Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer 2014, 55, 4563-4576.  doi: 10.1016/j.polymer.2014.07.028

    20. [20]

      Das, S.; Cox, D. F.; Wilkes, G. L.; Klinedinst, D. B.; Yilgor, I.; Yilgor, E.; Beyer, F. L. Effect of Symmetry and H‐bond strength of hard segments on the structure‐property relationships of segmented, nonchain extended polyurethanes and polyureas. J. Polym. Sci., Part A: Polym. Phys 2007, 46, 853-875.

    21. [21]

      Das, S.; Yilgor, I.; Yilgor, E.; Wilkes, G. L. Probing the urea hard domain connectivity in segmented, non-chain extended polyureas using hydrogen-bond screening agents. Polymer 2008, 49, 174-179.  doi: 10.1016/j.polymer.2007.10.046

    22. [22]

      Aneja, A.; Wilkes, G. L. Exploring macro-and microlevel connectivity of the urea phase in slabstock flexible polyurethane foam formulations using lithium chloride as a probe. Polymer 2002, 43, 5551-5561.  doi: 10.1016/S0032-3861(02)00355-5

    23. [23]

      Mattia, J.; Painter, P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 2007, 40, 1546-1554.  doi: 10.1021/ma0626362

    24. [24]

      Appel, W. P. J.; Portale, G.; Wisse, E.; Dankers, P. Y. W.; Meijer, E. W. Aggregation of ureido-pyrimidinone supramolecular thermoplastic elastomers into nanofibers: A kinetic analysis. Macromolecules 2011, 44, 6776-6784.  doi: 10.1021/ma201303s

    25. [25]

      Cheng, C. C.; Yen, Y. C.; Chang, F. C. Self-supporting polymer from a POSS derivative. Macromol. Rapid Commun. 2011, 32, 927-932.  doi: 10.1002/marc.v32.12

    26. [26]

      Söntjens, S. H. M.; Renken, R. A. E.; Gemert, G. M. L. V.; Engels, T. A. P.; Bosman, A. W.; Henk; Janssen, M.; Govaert, L. E.; Baaijens, F. P. T. Thermoplastic elastomers based on strong and well-defined hydrogen-bonding interactions. Macromolecules 2008, 41, 5703-5708.  doi: 10.1021/ma800744c

    27. [27]

      Gooch, A.; Nedolisa, C.; Houton, K. A.; Lindsay, C. I.; Saiani, A.; Wilson, A. J. Tunable self-assembled elastomers using triply hydrogen-bonded arrays. Macromolecules 2012, 45, 4723−4729.  doi: 10.1021/ma3001109

    28. [28]

      Dankers, P. Y. W.; Zhang, Z.; Wisse, E.; Grijpma, D. W.; Sijbesma, R. P.; Feijen, J.; Meijer, E. W. Oligo(trimethylene carbonate)-based supramolecular biomaterials. Macromolecules 2006, 39, 8763-8771.  doi: 10.1021/ma061078o

    29. [29]

      Hirschberg, J. H. K. K.; Beijer, F. H.; Aert, H. A. V.; Magusin, P. C. M. M.; Sijbesma, R. P.; Meijer, E. W. Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units. Macromolecules 1999, 32, 2696-2705.  doi: 10.1021/ma981950w

    30. [30]

      Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H. C.; Niu, S.; Yan, H.; Wang, S.; Lei, T. Quadruple H-bonding crosslinked supramolecular polymeric materials as substrates for stretchable, anti-tearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 2018, 140, 5280-5289.  doi: 10.1021/jacs.8b01682

    31. [31]

      Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed 2018, 57, 13838-13842.  doi: 10.1002/anie.201807622

    32. [32]

      Luo, M. C.; Jian, Z.; Xuan, F.; Huang, G.; Wu, J. Toughening diene elastomers by strong hydrogen bond interactions. Polymer 2016, 106, 21-28.  doi: 10.1016/j.polymer.2016.10.056

    33. [33]

      Jie, L.; Tang, Z.; Jing, H.; Guo, B.; Huang, G. Promoted strain-induced-crystallization in synthetic cis-1,4-polyisoprene via constructing sacrificial bonds. Polymer 2016, 97, 580-588.  doi: 10.1016/j.polymer.2016.06.001

    34. [34]

      Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161-210.  doi: 10.1016/0032-3861(67)90021-3

    35. [35]

      Sontjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4 1H -pyrimidinone dimers. J. Am. Chem. Soc. 2000, 122, 7487-7493.  doi: 10.1021/ja000435m

    36. [36]

      Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 1998, 120, 6761-6769.  doi: 10.1021/ja974112a

    37. [37]

      Wei, M.; Zhan, M.; Yu, D.; Xie, H.; He, M.; Yang, K.; Wang, Y. Novel Poly(tetramethylene ether)glycol and poly(ε-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity. ACS Appl. Mater. Interfaces 2015, 7, 2585-2596.  doi: 10.1021/am507575z

    38. [38]

      Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch‐self‐healing elastomers via a phase‐locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.  doi: 10.1002/adma.v30.38

    39. [39]

      Teo, L. S.; Chen, C. Y.; Kuo, J. F. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s. Macromolecules 1997, 30, 1793-1799.  doi: 10.1021/ma961035f

    40. [40]

      Srichatrapimuk, V. W.; Cooper, S. L. Infrared thermal analysis of polyurethane block polymers. J. Polym. Sci., Part A: Polym. Phys 1978, 15, 267-311.

    41. [41]

      Prisacariu, C. Polyurethane elastomers: from morphology to mechanical aspects. Springer Science & Business Media, 2011.

    42. [42]

      Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 2015, 137, 4846-4850.  doi: 10.1021/jacs.5b01601

    43. [43]

      Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977.  doi: 10.1038/nature06669

    44. [44]

      Liu, X. Y.; Ming, Z.; Shi, F. K.; Hao, X.; Xie, X. M. Multi-bond network hydrogels with robust mechanical and self-healable properties. Chin. J. Polym. Sci. 2017, 35, 1253-1267.  doi: 10.1007/s10118-017-1971-0

    45. [45]

      Luo, M. C.; Zhang, X. K.; Zeng, J.; Gao, X. X.; Huang, G. S. Enhanced relaxation behavior below glass transition temperature in diene elastomer with heterogeneous physical network. Polymer 2016, 91, 81-88.  doi: 10.1016/j.polymer.2016.03.083

  • 加载中
    1. [1]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    2. [2]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    7. [7]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    8. [8]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    9. [9]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    10. [10]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    11. [11]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    12. [12]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    13. [13]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    14. [14]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    17. [17]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    20. [20]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

Metrics
  • PDF Downloads(0)
  • Abstract views(833)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return