Citation: Jian-Hua Li, Hui Zheng, Hua-Xiang Lin, Bo-Xin Zhang, Jia-Bin Wang, Tong-Lei Li, Qi-Qing Zhang. Preparation of Three Dimensional Hydroxyapatite Nanoparticles/Poly(vinylidene fluoride) Blend Membranes with Excellent Dye Removal Efficiency and Investigation of Adsorption Mechanism[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1234-1247. doi: 10.1007/s10118-019-2271-7 shu

Preparation of Three Dimensional Hydroxyapatite Nanoparticles/Poly(vinylidene fluoride) Blend Membranes with Excellent Dye Removal Efficiency and Investigation of Adsorption Mechanism

  • Corresponding author: Jian-Hua Li, jhli_2005@163.com
  • Received Date: 7 March 2019
    Accepted Date: 8 April 2019
    Available Online: 6 June 2019

  • In this work, poly(vinylidene fluoride) (PVDF) membranes with hydrophilicity as well as preeminent mechanical strength and dye removal efficiency were fabricated by blending with three dimensional hydroxyapatite nanoparticles (HAPNPs). Surface chemical composition and morphology of the prepared membranes were systematically investigated by ATR-FTIR, XPS, XRD, FESEM, and EDS mapping analyses. The results verified that a large number of HAPNPs were successfully embedded on the modified membrane cross-sections. Moreover, HAPNPs content in the casting solution is an important factor that could have profound influence on the structures and performances of PVDF/HAPNPs blend membranes. The optimal membrane M2 with 2 wt% HAPNPs exhibited excellent hydrophilicity, outstanding mechanical strength of 19.60 MPa, and high water flux of (2466 ± 31) L·m–2·h–1. The maximum static adsorption capacity of the optimal membrane was about 10.83 mg/g, which is 3.75 times that of the pristine PVDF membrane (2.89 mg/g). PVDF/HAPNPs membranes were not only utilized for static adsorption, but also applied to dynamic dye removal. The possible adsorption mechanism between Congo red (CR) and HAPNPs embedded on the blend membranes was firstly discussed in this work. HAPNPs interacted with CR via Lewis reaction, hydrogen bond interaction, as well as electrostatic attraction to achieve the adsorption effect. Herein, the PVDF/HAPNPs blend membranes with extraordinary hydrophilicity, mechanical strength, and dye removal efficiency possess tremendous potential for practical applications of wastewater treatment.
  • 加载中
    1. [1]

      Zhang, P. B.; Tang, A. Q.; Wang, Z. H.; Lu, J. Y.; Zhu, B. K.; Zhu, L. P. Tough poly(L-DOPA)-containing double network hydrogel beads with high capacity of dye adsorption. Chinese J. Polym. Sci. 2018, 36(11), 1251-1261.  doi: 10.1007/s10118-018-2163-2

    2. [2]

      Mahmoudian, M.; Balkanloo, P. G.; Nozad, E. A facile method for dye and heavy metal elimination by pH sensitive acid activated montmorillonite/polyethersulfone nanocomposite membrane. Chinese J. Polym. Sci. 2018, 49-57.

    3. [3]

      Li, F.; Dong, Y. C.; Kang W. M.; Cheng, B. W.; Cui, G. X. Enhanced removal of azo dye using modified PAN nanofibrous membrane Fe complexes with adsorption/visible-driven photocatalysis bifunctional roles. Appl. Surf. Sci. 2017, 404, 206-215.  doi: 10.1016/j.apsusc.2017.01.268

    4. [4]

      Liu, N.; Zhang Q. D.; Qu, R. X.; Zhang, W. F.; Li, H. F.; Wei, Y.; Feng, L. Nanocomposite deposited membrane for oil-in-water emulsion separation with in situ removal of anionic dyes and surfactants. Langmuir 2017, 33(30), 7380-7388.  doi: 10.1021/acs.langmuir.7b01281

    5. [5]

      Li, B.; Dong, Y. C.; Ding. Z. Z. Heterogeneous Fenton degradation of azo dyes catalyzed by modified polyacrylonitrile fiber Fe complexes: QSPR (quantitative structure property relationship) study. J. Environ. Sci. 2013, 25(7), 1469-1476.  doi: 10.1016/S1001-0742(12)60190-9

    6. [6]

      Hamoud, H. I.; Finqueneisel, G.; Azambre, B. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system. J. Environ. Manage. 2017, 195, 195-207.  doi: 10.1016/j.jenvman.2016.07.067

    7. [7]

      Wang, T. Q.; Xu, Y.; He, Z. D.; Zhou, M. H.; Huang, K. Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chinese J. Polym. Sci. 2018, 36(1), 98-105.  doi: 10.1007/s10118-018-2007-0

    8. [8]

      Zhan, Y. Q.; Wan, X. Y.; He, S. J.; Yang, Q. B.; He, Y. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation. Chem. Eng. J. 2018, 333, 132-145.  doi: 10.1016/j.cej.2017.09.147

    9. [9]

      Ghaedi, M.; Sadeghian, B.; Pebdani, A. A.; Sahraei, R.; Daneshfar, A.; Duran, C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem. Eng. J. 2012, 187, 133-141.  doi: 10.1016/j.cej.2012.01.111

    10. [10]

      Zhang, R. N.; Su, Y. L.; Zhao, X. T.; Li, Y. F.; Zhao, J. J.; Jiang, Z. Y. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). J. Membr. Sci. 2014, 470, 9-17.  doi: 10.1016/j.memsci.2014.07.006

    11. [11]

      Dawood, S.; Sen, T. K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012, 46(6), 1933-1946.  doi: 10.1016/j.watres.2012.01.009

    12. [12]

      Grabowska, E. L.; Gryglewicz, G. Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 2007, 74(1), 34-40.  doi: 10.1016/j.dyepig.2006.01.027

    13. [13]

      Kupiec, A. S.; Olender, E.; Malina, D.; Tyliszczak, B. Effect of calcination parameters on behavior of bone hydroxyapatite in artificial saliva and its biosafety. Mater. Chem. Phys. 2018, 206, 158-165.  doi: 10.1016/j.matchemphys.2017.12.020

    14. [14]

      Chang, M. C.; Ko, C. C.; Douglas, W. H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24(17), 2853-2862.  doi: 10.1016/S0142-9612(03)00115-7

    15. [15]

      Furuichi, K.; Oaki, Y.; Imai, H. Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin. Chem. Mater. 2006, 18(1), 229-234.  doi: 10.1021/cm052213z

    16. [16]

      Yang, L. X.; Yin, J. J.; Wang, L. L.; Xing, G. X.; Yin, P.; Liu, Q. W. Hydrothermal synthesis of hierarchical hydroxyapatite: preparation, growth mechanism and drug release property. Ceram. Int. 2002, 38(1), 495-502.

    17. [17]

      Pramanik, S.; Agarwal, A. K.; Rai, K. N.; Garg, A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 2007, 33(3), 419-426.  doi: 10.1016/j.ceramint.2005.10.025

    18. [18]

      Nirmala, R.; Nam, K. T.; Navamathavan, R.; Park, S. J.; Kim, H. Y. Hydroxyapatite mineralization on the calcium chloride blended polyurethane nanofiber via biomimetic method. Nanoscale. Res. Lett. 2011, 6(1), 1-8.

    19. [19]

      Li, M.; Liu, X. M.; Xu, Z. Q.; Yeung, K. W. K.; Wu, S. L. Dopamine modified organic-inorganic hybrid coating for antimicrobial and osteogenesis. ACS Appl. Mater. Interfaces 2016, 8(49), 33972-33981.  doi: 10.1021/acsami.6b09457

    20. [20]

      Gao, X.; Song, J. L.; Ji, P.; Zhang, X. H.; Li, X. M.; Xu, X.; Wang, M. K.; Zhang, S. Q.; Deng, Y.; Deng, F.; Wei, S. C. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl. Mater. Interfaces 2016, 8(41), 3499-3515.

    21. [21]

      Koley, P.; Sakurai, M.; Takei, T.; Aono, M. Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC Adv. 2016, 6(89), 86607-86616.  doi: 10.1039/C6RA12818A

    22. [22]

      Lee, M.; Kim, H.; Seo, J.; Kang, M.; Kang, S.; Jang, J.; Lee, Y.; Seo, J. H. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces. Appl. Surf. Sci. 2018, 427, 517-524.  doi: 10.1016/j.apsusc.2017.08.067

    23. [23]

      Zhang, J.; Zhang, W. P.; Bao, T.; Chen, Z. L. Mussel-inspired polydopamine-assisted hydroxyapatite as the stationary phase for capillary electrochromatography. Analyst 2013, 139(1), 242-250.

    24. [24]

      Yu, W. L.; Sun, T. W.; Ding, Z. Y.; Qi, C.; Zhao, H. K.; Chen, F.; Shi, Z. M.; Zhu, Y. J.; Chen, D. Y.; He, Y. H. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. J. Mater. Chem. B 2017, 5(5), 1039-1052.  doi: 10.1039/C6TB02747D

    25. [25]

      Zhang, Y. G.; Zhu, Y. J.; Chen, F.; Sun, T. W.; Jiang, Y. Y. Ultralong hydroxyapatite microtubes: solvothermal synthesis and application in drug loading and sustained drug release. CrystEngComm 2017, 19(14), 1965-1973.  doi: 10.1039/C6CE02394K

    26. [26]

      Zhang, X.; Lang, W. Z.; Xu, H. P.; Yan, X.; Guo, Y. J. The effects of hydroxyapatite nano whiskers and its synergism with polyvinylpyrrolidone on poly(vinylidene fluoride) hollow fiber ultrafiltration membranes. RSC Adv. 2015, 5(28), 21532-21543.  doi: 10.1039/C5RA00926J

    27. [27]

      Shi, C. T.; Lv, C. Z.; Wu, L.; Hou, X. D. Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution. J. Hazard. Mater. 2017, 338, 241-249.  doi: 10.1016/j.jhazmat.2017.05.022

    28. [28]

      Li, J. H.; Xu, Y. Y.; Zhu, L. P.; Wang, J. H.; Du, C. H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. 2009, 326(2), 659-666.  doi: 10.1016/j.memsci.2008.10.049

    29. [29]

      Jiang, J. H.; Zhang, P. B.; Zhu, L. P.; Zhu, B. K.; Xu, Y. Y. Improving antifouling ability and hemocompatibility of poly(vinylidene fluoride) membranes by polydopamine-mediated ATRP. J. Mater. Chem. B 2015, 3, 7698-7706.  doi: 10.1039/C5TB01336D

    30. [30]

      Li, J. H.; Wang, S. S.; Zhang, D. B.; Ni, X. X.; Zhang, Q. Q. Amino acids functionalized graphene oxide for enhanced hydrophilicity and antifouling property of poly(vinylidene fluoride) membranes. Chinese J. Polym. Sci. 2016, 34(7), 805-819.  doi: 10.1007/s10118-016-1808-2

    31. [31]

      Zhu, Y. Z.; Xie, W.; Zhang, F.; Xing, T. L.; Jin, J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl. Mater. Interfaces 2017, 9(11), 9603-9613.  doi: 10.1021/acsami.6b15682

    32. [32]

      Jiang, X. (C.); Ding, J. F.; Kumar, A. Polyurethane-poly(vinylidene fluoride) (PU-PVDF) thin film composite membranes for gas separation. J. Membr. Sci. 2008, 323(2), 371-378.  doi: 10.1016/j.memsci.2008.06.048

    33. [33]

      Boo, C.; Lee, J.; Elimelech, M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ. Sci. Technol. 2016, 50(22), 12275-12282.  doi: 10.1021/acs.est.6b03882

    34. [34]

      Gao, K.; Su, Y. L.; Zhou, L. J.; He, M. R.; Zhang, R. N.; Liu, Y. N.; Jiang, Z. Y. Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and antibacterial properties. J. Membr. Sci. 2018, 548, 621-631.  doi: 10.1016/j.memsci.2017.10.042

    35. [35]

      Zhang, W. B.; Hu, L.; Chen, H. M.; Gao, S. J.; Zhang, X. C.; Jin, J. Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood. J. Mater. Chem. B 2017, 5(25), 4876-4882.  doi: 10.1039/C7TB00644F

    36. [36]

      Luo, C. Q.; Liu, Q. X. Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation. ACS Appl. Mater. Interfaces 2017, 9(9), 8297-8307.  doi: 10.1021/acsami.6b16206

    37. [37]

      Venault, A.; Hsu, C. H.; Ishihara, K.; Chang, Y. Zwitterionic bi-continuous membranes from a phosphobetaine copolymer/poly(vinylidene fluoride) blend via VIPS for biofouling mitigation. J. Membr. Sci. 2018, 550, 377-388.  doi: 10.1016/j.memsci.2017.12.075

    38. [38]

      Li, J. H.; Zhang, D. B.; Ni, X. X.; Zheng, H.; Zhang, Q. Q. Excellent hydrophilic and anti-bacterial fouling PVDF membrane based on Ag nanoparticle self-assembled PCBMA polymer brush. Chinese J. Polym. Sci. 2017, 35(7), 809-822.  doi: 10.1007/s10118-017-1944-3

    39. [39]

      Li, J. H.; Ni, X. X.; Zhang, D. B.; Zheng, H.; Wang, J.B.; Zhang, Q. Q. Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility. Appl. Surf. Sci. 2018, 444, 672-690.  doi: 10.1016/j.apsusc.2018.03.034

    40. [40]

      Fang, X. F.; Li, J. S.; Li, X.; Pan, S. L.; Zhang, X.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem. Eng. J. 2017, 314, 38-49.  doi: 10.1016/j.cej.2016.12.125

    41. [41]

      Aluigi, A.; Rombaldoni, F.; Tonetti, C.; Jannoke, L. Study of methylene blue adsorption on keratin nanofibrous membranes. J. Hazard. Mater. 2014, 268(3), 156-165.

    42. [42]

      Li, Q.; Li, Y. H.; Ma, X. M.; Du, Q. J.; Sui, K. Y.; Wang, D. C.; Wang, C. P.; Li, H. L.; Xia, Y. Z. Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chem. Eng. J. 2017, 316, 623-630.  doi: 10.1016/j.cej.2017.01.098

    43. [43]

      Tan, P.; Sun, J.; Hua, Y. Y.; Fang, Z.; Bi, Q.; Chen, Y. C.; Cheng, J. H. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 2015, 297, 251-260.  doi: 10.1016/j.jhazmat.2015.04.068

  • 加载中
    1. [1]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    2. [2]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    5. [5]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    6. [6]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    7. [7]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    8. [8]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    9. [9]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    10. [10]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    11. [11]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    12. [12]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    13. [13]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    14. [14]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    15. [15]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    16. [16]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    17. [17]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    18. [18]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    19. [19]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    20. [20]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

Metrics
  • PDF Downloads(0)
  • Abstract views(721)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return