Citation: Han Jia, Kun Chang, Shu-Ying Gu. Synthesis and Properties of Reversible Disulfide Bond-based Self-healing Polyurethane with Triple Shape Memory Properties[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1119-1129. doi: 10.1007/s10118-019-2268-2 shu

Synthesis and Properties of Reversible Disulfide Bond-based Self-healing Polyurethane with Triple Shape Memory Properties

  • Corresponding author: Shu-Ying Gu, gushuying@tongji.edu.cn
  • Received Date: 28 February 2019
    Revised Date: 30 March 2019
    Available Online: 21 May 2019

  • A reversible disulfide bond-based self-healing polyurethane with triple shape memory properties was prepared by chain extending of random copolymer poly(lactide-co-caprolactone) (PCLA), hexamethylene diisocyanate (HDI), polytetrahydrofuran (PTMEG), and 4,4′-aminophenyl disulfide. The chemical structures were characterized using 1H nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). The thermal properties, self-healing properties, triple-shape memory effect, and quantitative shape memory response were evaluated by differential scanning calorimetry (DSC), tensile tests, two-step programming process thermal mechanical experiments, and subsequent progressive thermal recovery. The self-healing mechanism and procedures were investigated using polarizing optical microscopy (POM) and an optical profiler. It was concluded that self-healing properties (up to 60%) and triple-shape memory properties around 35 and 50 °C (with shape fixation ratios of 94.3% and 98.3%, shape recovery ratios of 76.6% and 85.1%, respectively) were integrated to the shape memory polyurethane. As-prepared polyurethane is expected to have potential applications in multi-shape coatings, films, and step-by-step deploying structures.
  • 加载中
    1. [1]

      Ye, L.; Zhang, S. F.; Lin, Y. C.; Min, J. K.; Ma, L.; Tang, I. Synthesis and characterization of butyl acrylate-based graft polymers with thermos-responsive branching sites via the Diels-Alder reaction of furan/maleimide chains. Chinese J. Polym. Sci. 2018, 36, 1011-1018.  doi: 10.1007/s10118-018-2107-x

    2. [2]

      Guo, Y. K.; Li, H.; Zhao, P. X.; Wang, X. F.; Astruc, D.; Shuai, M. B. Thermo-reversible MWCNTs/epoxy polymer for use in self-healing and recyclable epoxy adhesive. Chinese J. Polym. Sci. 2017, 35, 728-738.  doi: 10.1007/s10118-017-1920-y

    3. [3]

      Canadell, J.; Goossens, H.; Klumperman, B. Self-healing materials based on disulfide links. Macromolecules 2011, 44, 2536-2541.  doi: 10.1021/ma2001492

    4. [4]

      Ling, J.; Rong, M. Z.; Zhang, M. Q. Effect of molecular weight of PEG soft segments on photo-stimulated self-healing performance of coumarin functional polyurethane. Chinese J. Polym. Sci. 2014, 32, 1286-1297.  doi: 10.1007/s10118-014-1522-x

    5. [5]

      Li, W. T.; Dong, B. Q.; Yang, Z. X.; Xu, J.; Chen, Q.; Li, H. X.; Xing, F.; Jiang, Z. W. Recent advances in intrinsic self-healing cementitious materials. Adv. Mater. 2018, 30, 1705679.  doi: 10.1002/adma.v30.17

    6. [6]

      van Dijk, N.; van der Zwaag, S. Self-healing phenomena in metals. Adv. Mater. Interfaces 2018, 5, 1800226.  doi: 10.1002/admi.v5.17

    7. [7]

      Yang, H. J.; Shao, X. H.; Pei, Y. T.; Zhang, Z. F.; de Hosson, J. T. M. Enhanced efficiency of self-healing of Cr2AlC. Mater. Lett. 2018, 227, 51-54.  doi: 10.1016/j.matlet.2018.05.038

    8. [8]

      Cho, S. H.; White, S. R.; Braun, P. V. Self-healing polymer coatings. Adv. Mater. 2009, 21, 645-649.  doi: 10.1002/adma.v21:6

    9. [9]

      Liu, X. Y.; Zhong, M.; Shi, F. K.; Xu, H.; Xie, X. M. Multi-bond network hydrogels with robust mechanical and self-healable properties. Chinese J. Polym. Sci. 2017, 35, 1253-1267.  doi: 10.1007/s10118-017-1971-0

    10. [10]

      Raimondo, M.; de Nicola, F.; Volponi, R.; Binder, W.; Michael, P.; Russo, S.; Guadagno, L. Self-repairing CFRPs targeted towards structural aerospace applications. Int. J. Struct. Integ. 2016, 7, 656-670.  doi: 10.1108/IJSI-11-2015-0053

    11. [11]

      Michal, B. T.; Spencer, E. J.; Rowan, S. J. Stimuli-responsive reversible two-level adhesion from a structurally dynamic shape-memory polymer. ACS Appl. Mater. Interfaces 2016, 8, 11041-11049.  doi: 10.1021/acsami.6b01251

    12. [12]

      Zhang, B. L.; Zhang, P.; Zhang, H. Z.; Yan, C.; Zheng, Z. J.; Wu, B.; Yu, Y. A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer. Macromol. Rapid Comm. 2017, 28, 1700110.

    13. [13]

      Ding, Z. J.; Yuan, L.; Guan, Q. B.; Gu, A. J.; Liang, G. Z. A reconfiguring and self-healing thermoset epoxy/chain-extended bismaleimide resin system with thermally dynamic covalent bonds. Polymer 2018, 147, 170-182.  doi: 10.1016/j.polymer.2018.06.008

    14. [14]

      Chang, K.; Jia, H.; Gu, S. Y. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Euro. Polym. J. 2019, 112, 822-831.  doi: 10.1016/j.eurpolymj.2018.11.005

    15. [15]

      Liu, C. C.; Zhang, A. Y.; Ye, L.; Feng, Z. G. Self-healing biodegradable poly(urea-urethane) elastomers based on hydrogen bonding interactions. Chinese J. Polym. Sci. 2013, 31, 251-262.  doi: 10.1007/s10118-013-1211-1

    16. [16]

      Luan, Y. G.; Zhang, X. A.; Jiang, S. L.; Chen, J. H.; Lyn, Y. F. Self-healing supramolecular polymer composites by hydrogen bonding interaction between hyperbranched polymer and graphene oxide. Chinese J. Polym. Sci. 2018, 36, 584-591.  doi: 10.1007/s10118-018-2025-y

    17. [17]

      Rekondo, A.; Martin, R.; de Luzuriaga, A. R.; Cabanero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237-240.  doi: 10.1039/C3MH00061C

    18. [18]

      Ling, L.; Li, J. H.; Zhang, G. P.; Sun, R.; Wong, C. P. Self-healing and shape memory linear polyurethane based on disulfide linkages with excellent mechanical property. Macromol. Res. 2018, 26, 365-373.  doi: 10.1007/s13233-018-6037-9

    19. [19]

      Lai, Y.; Kuang, X.; Zhu, P.; Huang, M. M.; Dong, X.; Wang, D. J. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.  doi: 10.1002/adma.v30.38

    20. [20]

      Xu, Y.; Chen, D. Shape memory-assisted self-healing polyurethane inspired by a suture technique. J. Mater. Sci. 2018, 53, 10582-10592.  doi: 10.1007/s10853-018-2346-9

    21. [21]

      Zhang, L. H.; Chen, L. F.; Rowan, S. J. Trapping dynamic disulfide bonds in the hard segments of thermoplastic polyurethane elastomers. Macromol. Chem. Phys. 2017, 218, 1600320.  doi: 10.1002/macp.201600320

    22. [22]

      Gu, S. Y.; Gao, X. F.; Jin, S. P.; Liu, Y. L. Biodegradable shape memory polyurethanes with controllable trigger temperature. Chinese J. Polym. Sci. 2016, 34, 720-729.  doi: 10.1007/s10118-016-1795-3

    23. [23]

      Lutz, A.; van den Berg, O.; van Damme, J.; Verheyen, K.; Bauters, E.; de Graeve, I.; du Prez, F. E.; Terryn, H. A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl. Mater. Interfaces 2015, 7, 175-183.  doi: 10.1021/am505621x

    24. [24]

      Gu, S. Y.; Liu, L. L.; Gao, X. F. Triple-shape memory properties of polyurethane/polylactide- polytetramethylene ether blends. Polym. Int. 2015, 64, 1155-1162.  doi: 10.1002/pi.2015.64.issue-9

    25. [25]

      Zadeh, M. A.; van der Zwaag, S.; García, S. J. Assessment of healed scratches in intrinsic healing coatings by AC/DC/AC accelerated electrochemical procedure. Surf. Coat. Technol. 2016, 303, 396-405.  doi: 10.1016/j.surfcoat.2015.11.001

    26. [26]

      Zadeh, M. A.; Esteves, A. C. C.; van der Zwaag, S.; Garcia, S. J. Healable dual organic-inorganic crosslinked Sol-gel based polymers: Crosslinking density and tetrasulfide content effect. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1953-1961.  doi: 10.1002/pola.v52.14

    27. [27]

      Li, F. K.; Hou, J. N.; Zhu, W.; Zhang, X.; Xu, M.; Luo, X. L.; Ma, D. Z.; Kim, B. K. Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J. Appl. Polym. Sci. 1996, 62, 631-638.  doi: 10.1002/(ISSN)1097-4628

    28. [28]

      Liaw, D. J. The relative physical and thermal properties of polyurethane elastomers: Effect of chain extenders of bisphenols diisocyanate and polyol structures. J. Appl. Polym. Sci. 1997, 66, 1251-1265.  doi: 10.1002/(ISSN)1097-4628

    29. [29]

      Jeon, O.; Lee, S. H.; Kim, S. H.; Lee, Y. M.; Kim, Y. H. Synthesis and characterization of poly(L-lactide)-poly(ε-caprolactone) multiblock copolymers. Macromolecules 2003, 36, 5585-5592.  doi: 10.1021/ma034006v

    30. [30]

      Sarma, R. J.; Otto, S.; Nitschke, J. R. Disulfides, imines, and metal coordination within a single system: Interplay between three dynamic equilibria. Chem. Eur. J. 2007, 13, 9542-9546.  doi: 10.1002/(ISSN)1521-3765

    31. [31]

      Belenguer, A. M.; Friscic, T.; Day, G. M.; Sanders, J. K. M. Solid-state dynamic combinatorial chemistry: Reversibility and thermodynamic product selection in covalent mechanosynthesis. Chem. Sci. 2011, 2, 696-700.  doi: 10.1039/c0sc00533a

    32. [32]

      Nevejans, S.; Ballard, N.; Miranda, J. I.; Reck, B.; Asua, J. M. The underlying mechanisms for self-healing of poly(disulfide)s. Phys. Chem. Chem. Phys. 2016, 18, 27577-27583.  doi: 10.1039/C6CP04028D

    33. [33]

      Wool, R. P.; O’Connor, K. M. A theory crack healing in polymers. J. Appl. Phys. 1981, 52, 5953-5963.  doi: 10.1063/1.328526

    34. [34]

      Du, W. N.; Jin, Y.; Pan, J. Z.; Fan, W. H.; Lai, S. Q.; Sun, X. P. Thermal induced shape-memory and self-healing of segmented polyurethane containing diselenide bonds. J. Appl. Polym. Sci. 2018, 135, 46326.  doi: 10.1002/app.46326

    35. [35]

      Rodriguez, E. D.; Luo, X. F.; Mather, P. T. Linear/network poly(ε-caprolactone blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3, 152-161.  doi: 10.1021/am101012c

    36. [36]

      Zheng, N.; Hou, J. J.; Xu, Y.; Fang, Z. Z.; Zou, W. K.; Zhao, Q.; Xie, T. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance. ACS Macro Lett. 2017, 6, 326-330.  doi: 10.1021/acsmacrolett.7b00037

    37. [37]

      Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79-120.

    38. [38]

      Zheng, N.; Xie, T. Thermadapt shape memory polymer. Acta Polymerica Sinica (in Chinese) 2017, 11, 1715-1724.

  • 加载中
    1. [1]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    2. [2]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    3. [3]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    4. [4]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    5. [5]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    6. [6]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    7. [7]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    10. [10]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    11. [11]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    12. [12]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    13. [13]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    14. [14]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    15. [15]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    16. [16]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    19. [19]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    20. [20]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

Metrics
  • PDF Downloads(0)
  • Abstract views(663)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return