Citation: Mridula Nandi, Swagata Pan, Dipannita Ghosh, Priyadarsi De. Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 903-911. doi: 10.1007/s10118-019-2265-5 shu

Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers

  • Corresponding author: Priyadarsi De, p_de@iiserkol.ac.in
  • Received Date: 15 February 2019
    Revised Date: 20 March 2019
    Available Online: 28 May 2019

  • In this work, we investigated the effect of hydrophobic interactions between the polymeric backbone and chain-end groups on the self-assembly pathway of stearoyl appended side-chain valine (Val)-based poly(methacrylate/acrylate) homopolymers in different organic hydrocarbons. Gelation studies conducted revealed that while polymers with polyacrylate as backbone induces gelation in several organic hydrocarbons, polymers with polymethacrylate in the main-chain significantly hinders macroscopic gelation. Morphology of the organogels was analysed by field emission scanning electron microscopy (FESEM), and mechanical strengths of the organogels were determined by rheological measurements. Reversible addition-fragmentation chain transfer (RAFT) polymerization chain transfer agents (CTA)s, [R1―S―C=(S)―S―R2] with different ―R1 and ―R2 groups, have been employed to study the effect of structural variation at the chain-end on macroscopic assembly mechanism. We found that the additional interactions between terminal groups via hydrogen-bonding or π-π stacking interactions or both help to build up the self-assembly pathway and thereby produces mechanically stable organogels.
  • 加载中
    1. [1]

      Holder, S. J.; Sommerdijk, N. A. J. M. New micellar morphologies from amphiphilic block copolymers: Disks, toroids and bicontinuous micelles. Polym. Chem. 2011, 2, 1018-1028.  doi: 10.1039/c0py00379d

    2. [2]

      Dong, H.; Paramonov, S. E.; Aulisa, L.; Bakota, E. L.; Hartgerink, J. D. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructures. J. Am. Chem. Soc. 2007, 129, 12468-12472.  doi: 10.1021/ja072536r

    3. [3]

      Pati, D.; Kalva, N.; Das, S.; Kumaraswamy, G.; Sen Gupta, S.; Ambade, A. V. Multiple topologies from glycopolypeptide-dendron conjugate self-assembly: Nanorods, micelles, and organogels. J. Am. Chem. Soc. 2012, 134, 7796-7802.  doi: 10.1021/ja300065f

    4. [4]

      Du, J.; O'Reilly, R. K. Advances and challenges in smart and functional polymer vesicles. Soft Matter 2009, 5, 3544-3561.  doi: 10.1039/b905635a

    5. [5]

      Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 2010, 49, 7461-7464.  doi: 10.1002/anie.v49:41

    6. [6]

      Ajayaghosh, A.; Praveen, V. K. π-Organogels of self-assembled p-phenylenevinylenes: Soft materials with distinct size, shape, and functions. Acc. Chem. Res. 2007, 40, 644-656.  doi: 10.1021/ar7000364

    7. [7]

      Haldar, U.; Nandi, M.; Maiti, B.; De, P. POSS-induced enhancement of mechanical strength in RAFT-made thermoresponsive hydrogels. Polym. Chem. 2015, 6, 5077-5085.  doi: 10.1039/C5PY00664C

    8. [8]

      Peppas, N. A.; Huang, Y.; Torres-Lugo, M.; Ward, J. H.; Zhang, J. Physicochemical foundations and structural designs of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2000, 2, 9-29.  doi: 10.1146/annurev.bioeng.2.1.9

    9. [9]

      Deng, G.; Li, F.; Yu, H.; Liu, F.; Liu, C.; Sun, W.; Jiang, H.; Chen, Y. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett. 2012, 1, 275-279.  doi: 10.1021/mz200195n

    10. [10]

      Campanella, A.; Döhler, D.; Binder, W. H. Self-healing in supramolecular polymers. Macromol. Rapid Commun. 2018, 39, 1700739.  doi: 10.1002/marc.201700739

    11. [11]

      Koutsopoulos, S.; Unsworth, L. D.; Nagai, Y.; Zhang, S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. PNAS 2009, 106, 4623-4628.  doi: 10.1073/pnas.0807506106

    12. [12]

      Altunbas, A.; Lee, S. J.; Rajasekaran, S. A.; Schneider, J. P.; Pochan, D. J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 2011, 32, 5906-5914.  doi: 10.1016/j.biomaterials.2011.04.069

    13. [13]

      Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A. J. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. PNAS 2002, 99, 9996-10001.  doi: 10.1073/pnas.142309999

    14. [14]

      Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.  doi: 10.1126/science.1063187

    15. [15]

      Shao, H.; Wang, C. F.; Zhang, J.; Chen, S. Fabrication of reversible phase transition polymer gels toward metal ion sensing. Macromolecules 2014, 47, 1875-1881.  doi: 10.1021/ma402424f

    16. [16]

      Shi, D.; Liu, R.; Dong, W.; Li, X.; Zhang, H.; Chen, M.; Akashi, M. pH-dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in a metal-free environment. RSC Adv. 2015, 5, 82252-82258.  doi: 10.1039/C5RA15991A

    17. [17]

      Yu, X.; Chen, L.; Zhang, M.; Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem. Soc. Rev. 2014, 43, 5346-5371.  doi: 10.1039/C4CS00066H

    18. [18]

      Segarra-Maset, M. D.; Nebot, V. J.; Miravet, J. F.; Escuder, B. Control of molecular gelation by chemical stimuli. Chem. Soc. Rev. 2013, 42, 7086-7098.  doi: 10.1039/C2CS35436E

    19. [19]

      Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, 6042-6065.  doi: 10.1039/c2cs35091b

    20. [20]

      Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 2012, 41, 6195-6214.  doi: 10.1039/c2cs35264h

    21. [21]

      Okesola, B. O.; Smith, D. K. Applying low-molecular weight supramolecular gelators in an environmental setting- self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 2016, 45, 4226-4251.  doi: 10.1039/C6CS00124F

    22. [22]

      Suzuki, M.; Yanagida, R.; Setoguchi, C.; Shirai, H.; Hanabusa, K. New polymer organogelators with L-isoleucine and L-valine as a gelation-causing segment: Organogelation by a combination of supramolecular polymer and conventional polymer. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 353-361.  doi: 10.1002/(ISSN)1099-0518

    23. [23]

      Suzuki, M.; Setoguchi, C.; Shirai, H.; Hanabusa, K. Organogelation by polymer organogelators with a L-lysine derivative: formation of a three-dimensional network consisting of supramolecular and conventional polymers. Chem. Eur. J. 2007, 13, 8193-8200.  doi: 10.1002/(ISSN)1521-3765

    24. [24]

      Carretti, E.; Dei, L.; Baglioni, P.; Weiss. R. G. Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J. Am. Chem. Soc. 2003, 125, 5121-5129.  doi: 10.1021/ja034399d

    25. [25]

      Niyomsin, S.; Chirachanchai, S. Poly(acrylic acid) with benzoxazine-based supramolecular crosslinker for responsive and reversible functional hydrogel. Eur. Polym. J. 2018, 105, 451-458.  doi: 10.1016/j.eurpolymj.2018.06.024

    26. [26]

      Kumar, R. J.; MacDonald, J. M.; Singh, T. B.; Waddington, L. J.; Holmes, A. B. Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. J. Am. Chem. Soc. 2011, 133, 8564-8573.  doi: 10.1021/ja110858k

    27. [27]

      Saiani, A.; Guenet, J. M. On the helical form in syndiotactic poly(methyl methacrylate) thermoreversible gels as revealed by small-angle neutron scattering. Macromolecules 1997, 30, 966-972.  doi: 10.1021/ma961381x

    28. [28]

      Chen, L.; Yuan, Y.; Zhong, G.; Li, J.; Zhang, H. Novel application of a classical side-chain liquid crystalline polymer as a gelator for common solvents. Polymer 2017, 132, 51-58.  doi: 10.1016/j.polymer.2017.09.060

    29. [29]

      Madsen, J.; Armes, S. P. (Meth)acrylic stimulus-responsive block copolymer hydrogels. Soft Matter 2012, 8, 592-605.  doi: 10.1039/C1SM06035J

    30. [30]

      Nguyen-Misra, M.; Mattice, W. L. Micellization and gelation of symmetric triblock copolymers with insoluble end blocks. Macromolecules 1995, 28, 1444-1457.  doi: 10.1021/ma00109a015

    31. [31]

      Li, C.; Tang, Y.; Armes, S. P.; Morris, C. J.; Rose, S. F.; Lloyd, A. W.; Lewis, A. L. Synthesis and characterization of biocompatible thermos-responsive gelators based on ABA triblock copolymers. Biomacromolecules 2005, 6, 994-999.  doi: 10.1021/bm049331k

    32. [32]

      Li, C.; Buurma, N. J.; Haq, I.; Turner, C.; Armes, S. P.; Castelletto, V.; Hamley, I. W.; Lewis, A. L. Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 2005, 21, 11026-11033.  doi: 10.1021/la0515672

    33. [33]

      Castelletto, V.; Hamley, I. W.; Ma, Y.; Bories-Azeau, X.; Armes, S. P.; Lewis, A. L. Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer. Langmuir 2004, 20, 4306-4309.  doi: 10.1021/la049859a

    34. [34]

      Li, Y.; Tang, Y.; Narain, R.; Lewis, A. L.; Armes, S. P. Biomimetic stimulus-responsive star diblock gelators. Langmuir 2005, 21, 9946-9954.  doi: 10.1021/la050356u

    35. [35]

      Madsen, J.; Armes, S. P.; Bertal, K.; Lomas, H.; MacNeil, S.; Lewis, A. L. Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Biomacromolecules 2008, 9, 2265-2275.  doi: 10.1021/bm8005006

    36. [36]

      Chharbonneau, C.; Chassenieux, C.; Colombani, O.; Nicolai, T. Controlling the dynamics of self-assembled triblock copolymer networks via the pH. Macromolecules 2011, 44, 4487-4495.  doi: 10.1021/ma2002382

    37. [37]

      Mondal, T.; Ghosh, S. A remarkable impact of a minor structural variation in the chain-end on the hierarchical self-assembly of a polymeric foldamer. Polym. Chem. 2016, 7, 6735-6743.  doi: 10.1039/C6PY01486K

    38. [38]

      Nandi, M.; Maiti, B.; Banerjee, S.; De, P. Hydrogen bonding driven self-assembly of side-chain amino acid and fatty acid appended poly(methacrylate)s: Gelation and application in oil spill recovery. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 511-521.

    39. [39]

      Nandi, M.; Banerjee, S.; De, P. Stearoyl appended pendant amino acid-based hyperbranched polymers for selective gelation of oil from oil/water mixture. Manuscript under revision.  doi: 10.1039/C9PY00105K

    40. [40]

      Moad, G.; Chong, Y. K.; Postma, A.; Rizzardon, E.; Thang, S. H. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 2005, 46, 8458-8468.  doi: 10.1016/j.polymer.2004.12.061

    41. [41]

      Dag, A.; Zhao, J.; Stenzel, M. H. Origami with ABC triblock terpolymers based on glycopolymers: Creation of virus-like morphologies. ACS Macro Lett. 2015, 4, 579-583.  doi: 10.1021/acsmacrolett.5b00163

    42. [42]

      Skey, J.; O’Reilly, R. K. Facile one pot synthesis of a range of reversible addition-fragmentation chain transfer (RAFT) agents. Chem. Commun. 2008, 4183-4185.

    43. [43]

      Roy, S. G.; Acharya, R.; Chatterji, U.; De, P. RAFT polymerization of methacrylates containing a tryptophan moiety: controlled synthesis of biocompatible fluorescent cationic chiral polymers with smart pH-responsiveness. Polym. Chem. 2013, 4, 1141-1152.  doi: 10.1039/C2PY20821K

    44. [44]

      Roy, S. G.; De, P. Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures. Polym. Chem. 2014, 5, 6365-6378.  doi: 10.1039/C4PY00766B

    45. [45]

      Yang, M.; Zhang, Z.; Yuan, F.; Wang, W.; Hess, S.; Lienkamp, K.; Lieberwirth, I.; Wegner, G. Self-assembled structures in organogels of amphiphilic diblock codendrimers. Chem. Eur. J. 2008, 14, 3330-3337.  doi: 10.1002/(ISSN)1521-3765

    46. [46]

      Adams, D. J.; Morris, K.; Chen, L.; Serpell, L. C.; Basca, J.; Day, G. M. The delicate balance between gelation and crystallisation: structural and computational investigations. Soft Matter 2010, 6, 4144-4156.  doi: 10.1039/c0sm00409j

    47. [47]

      Dastidar, P. Supramolecular gelling agents: Can they be designed. Chem. Soc. Rev. 2008, 37, 2699-2715.  doi: 10.1039/b807346e

    48. [48]

      Maiti, B.; De, P. RAFT polymerization of fatty acid containing monomers: Controlled synthesis of polymers from renewable resources. RSC Adv. 2013, 3, 24983-24990.  doi: 10.1039/c3ra45541f

    49. [49]

      Lee, C.-U.; Li, A.; Ghale, K.; Zhang, D. Crystallization and melting behaviors of cyclic and linear polypeptoids with alkyl side chains. Macromolecules 2013, 46, 8213-8223.  doi: 10.1021/ma401067f

    50. [50]

      Zhang, M.; Xu, D.; Yan, X.; Chen, J.; Dong, S.; Zheng, B.; Huang, F. Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew. Chem., Int. Ed. 2012, 51, 7011-7015.  doi: 10.1002/anie.201203063

    51. [51]

      Roy, S. G.; Kumar, A.; De, P. Amino acid containing cross-linked co-polymer gels: pH, thermo and salt responsiveness. Polymer 2016, 85, 1-9.  doi: 10.1016/j.polymer.2016.01.021

  • 加载中
    1. [1]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    8. [8]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    9. [9]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    10. [10]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    11. [11]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    12. [12]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    19. [19]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    20. [20]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

Metrics
  • PDF Downloads(0)
  • Abstract views(872)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return