Citation: Liang Ding, Juan Li, Rui-Yu Jiang, Ling-Fang Wang, Wei Song, Lei Zhu. Cu(0) Wire-mediated Single-electron Transfer-living Radical Polymerization of Oligo(ethylene oxide) Methyl Ether Acrylate by Selecting the Optimal Reaction Conditions[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1130-1141. doi: 10.1007/s10118-019-2263-7 shu

Cu(0) Wire-mediated Single-electron Transfer-living Radical Polymerization of Oligo(ethylene oxide) Methyl Ether Acrylate by Selecting the Optimal Reaction Conditions

  • The efficient Cu(0) wire-catalyzed single-electron transfer-living radical polymerization (SET-LRP) in organic solvents and mixtures of the organic solvents with water has been thoroughly investigated. Oligo(ethylene oxide) methyl ether acrylate was used as an exemplar oligomer monomer to determine the optimum polymerization conditions for rapid, controlled, and quantitative production of well-defined polymers. The effects of Cu(0)-wire length (12.5 or 4.5 cm), ligand type (tris(dimethylaminoethyl)amine, Me6-TREN, or tris(2-aminoethyl)amine, TREN), and solvent type (dipolar aprotic solvents, cyclic ethers, alcohol, or acetone) on the polymerization have been evaluated. Kinetic experiments were performed for all polymerizations to assess the " living” behavior of each system employed. Importantly, TREN could be used as a replacement for Me6-TREN in Cu(0) wire-catalyzed SET-LRP of oligomer monomer, which probably provides the most economical and efficient methodology since TREN is 80 times less expensive than Me6-TREN. The high chain-end fidelity of resulting polymer was experimentally verified by thiol-Michael addition reaction at the α-Br chain end and subsequent chain extension with methyl acrylate.
  • 加载中
    1. [1]

      Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Monteiro, M.; Barboiu, B.; Weichold, O.; Asandei, A. D.; Mitchell, C. M. Aqueous room temperature metal-catalyzed living radical polymerization of vinyl chloride. J. Am. Chem. Soc. 2002, 124, 4940-4941.  doi: 10.1021/ja0256055

    2. [2]

      Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D. M. Aqueous copper-mediated living polymerization: exploiting rapid disproportionation of CuBr with Me6TREN. J. Am. Chem. Soc. 2013, 135, 7355-7363.  doi: 10.1021/ja4026402

    3. [3]

      Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 ℃. J. Am. Chem. Soc. 2006, 128, 14156-15165.  doi: 10.1021/ja065484z

    4. [4]

      Rosen, B. M.; Percec, V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem. Rev. 2009, 109 5069-5119.  doi: 10.1021/cr900024j

    5. [5]

      Zhang, N.; S. Samanta, R.; Rosen, B. M.; Percec, V. Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. Chem. Rev. 2014, 114, 5848-5958.  doi: 10.1021/cr400689s

    6. [6]

      Lligadas, G.; Grama, S.; Percec, V. Recent developments in the synthesis of biomacromolecules and their conjugates by SET-LRP. Biomacromolecules 2017, 18, 1039-1063.  doi: 10.1021/acs.biomac.7b00197

    7. [7]

      Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem. Rev. 2016, 116, 835-877.  doi: 10.1021/acs.chemrev.5b00191

    8. [8]

      Nguyen, N. H.; Rosen, B. M.; Jiang, X.; Fleischmann, S.; Percec, V. New efficient reaction media for SET-LRP produced from binary mixtures of organic solvents and H2O. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5577-5590.  doi: 10.1002/pola.v47:21

    9. [9]

      Nguyen, N. H.; Rosen, B. M.; Percec, V. SET-LRP of N, N-dimethylacrylamide and of N-isopropylacrylamide at 25 ℃ in protic and in dipolar aprotic solvents; J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1752−1763.  doi: 10.1002/pola.v48:8

    10. [10]

      Leng, X.; Nguyen, N. H.; Beusekom, B.; Wilson, D. A.; Percec, V. SET-LRP of 2-hydroxyethyl acrylate in protic and dipolar aprotic solvents. Polym. Chem. 2013, 4, 2995−3004.  doi: 10.1039/c3py00048f

    11. [11]

      Ding, W.; Lv, C.; Sun, Y.; Liu, X.; Yu, T.; Qu, G.; Luan, H. Synthesis of zwitterionic polymer by SET-LRP at room temperature in aqueous. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 432−440.  doi: 10.1002/pola.v49.2

    12. [12]

      Hatano, T.; Rosen, B. M.; Percec, V. SET-LRP of vinyl chloride initiated with CHBr3 and catalyzed by Cu(0)-wire/TREN in DMSO at 25 ℃. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 164-172.  doi: 10.1002/pola.v48:1

    13. [13]

      Nguyen, N. H.; Levere, M. E. Percec, V. TREN vs Me6-TREN as ligands in SET-LRP of methyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 35-46.  doi: 10.1002/pola.v50.1

    14. [14]

      Moreno, A.; Grama, S.; Liu, T.; Galià, M.; Lligadas, G.; Percec, V. SET-LRP mediated by TREN in biphasic water-organic solvent mixtures provides the most economical and efficient process. Polym. Chem. 2017, 8, 7559-7574.  doi: 10.1039/C7PY01841J

    15. [15]

      Moreno, A.; Liu, T.; Ding, L.; Buzzacchera, I.; Galià, M.; Möller, M.; Wilson, C. J.; Lligadas, G.; Percec, V. SET-LRP in biphasic mixtures of fluorinated alcohols with water. Polym. Chem. 2018, 9, 2313-2327.  doi: 10.1039/C8PY00062J

    16. [16]

      Nicol, E.; Derouineau, T.; Puaud, F.; Zaitsev, A. Synthesis of double hydrophilic poly(ethylene oxide)‐b‐poly(2‐hydroxyethyl acrylate) by single‐electron transfer-living radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3885-3894.  doi: 10.1002/pola.v50.18

    17. [17]

      Lutz, J.-F.; Hoth, A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 2006, 39, 893-896.  doi: 10.1021/ma0517042

    18. [18]

      Lutz, J. F.; Akdemir, O.; Hoth, A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:   is the age of poly(NIPAM) over? J. Am. Chem. Soc. 2006, 128, 13046-13047.  doi: 10.1021/ja065324n

    19. [19]

      Lutz, J. F. Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3459-3470.  doi: 10.1002/(ISSN)1099-0518

    20. [20]

      Nguyen, N. H.; Leng, X.; Sun, H. J.; Percec, V. SET-LRP of oligo(ethylene oxide) methyl ether methacrylate in the absence and presence of Air. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3110-3122.  doi: 10.1002/pola.26718

    21. [21]

      Nguyen, N. H.; Kulis, J.; Sun, H. J.; Jia, Z.; Beusekom, B.; Levere, M. E.; Wilson, D. A.; Monteiro, M. J.; Percec, V. A comparative study of SET-LRP of oligo(ethylene oxide) methyl ether acrylate in DMSO and in H2O. Polym. Chem. 2013, 4, 144-155.  doi: 10.1039/C2PY20782F

    22. [22]

      Deng, Y.; Li, Y.; Dai, J.; Lang, M.; Huang, X. Functionalization of graphene oxide towards thermo‐sensitive nanocomposites via moderate in situ SET‐LRP. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 4747-4755.  doi: 10.1002/pola.v49.22

    23. [23]

      Simula, A.; Nikolaou, V.; Alsubaie, F.; Anastasaki, A.; Haddleton, D. M. The effect of ligand, solvent and Cu(0) source on the efficient polymerization of polyether acrylates and methacrylates in aqueous and organic media. Polym. Chem. 2015, 6, 5940-5950.  doi: 10.1039/C5PY00887E

    24. [24]

      Ciampolini, M.; Nardi, N. Five-coordinated high-spin complexes of bivalent cobalt, nickel, and copper with tris(2-dimethylaminoethyl)amine. Inorg. Chem. 1966, 5, 41-44.  doi: 10.1021/ic50035a010

    25. [25]

      Samanta, S. R.; Percec, V. Synthesis of high molar mass poly(N-butyl acrylate) and poly(2-ethylhexyl acrylate) by SET-LRP in mixtures of fluorinated alcohols with DMSO. Polym. Chem. 2014, 5, 169-174.  doi: 10.1039/C3PY01008B

    26. [26]

      Enayati, M.; Jezorek, R. L.; Percec, V. A multiple-stage activation of the catalytically inhomogeneous Cu(0) wire used in SET-LRP. Polym. Chem. 2016, 7, 4549-4558.  doi: 10.1039/C6PY00888G

    27. [27]

      Jezorek, R. L.; Enayati, M.; Smail, R. B.; Lejnieks, J.; Grama, S.; Monteiro, M. J.; Percec, V. The stirring rate provides dramatic acceleration of the ultrafast interfacial SET-LRP in biphasic organic solvent-water mixtures; Polym. Chem. 2017, 8, 3405-3424.  doi: 10.1039/C7PY00659D

    28. [28]

      Anastasaki, A.; Waldron, C.; Nikolaou, V.; Wilson, P.; McHale, R.; T.; Smith, Haddleton, D. M. Polymerization of long chain[meth]acrylates by Cu(0)-mediated and catalytic chain transfer polymerisation (CCTP): high fidelity end group incorporation and modification. Polym. Chem. 2013, 4, 4113-4119.  doi: 10.1039/c3py00618b

    29. [29]

      Moreno, A.; Liu, T.; Galià, M.; Lligadas, G.; Percec, V. Acrylate-macromonomers and telechelics of PBA by merging biphasic SET-LRP of BA, chain extension with MA and biphasic esterification. Polym. Chem. 2018, 9, 1961-1971.  doi: 10.1039/C8PY00156A

    30. [30]

      Simula, A.; Nurumbetov, G.; Anastasaki, A.; Wilson, P.; Haddleton, D. M. Synthesis and reactivity of α, ω-homotelechelic polymers by Cu(0)-mediated living radical polymerization. Eur. Polym. J. 2015, 62, 294-303.  doi: 10.1016/j.eurpolymj.2014.07.014

    31. [31]

      Simula, A.; Nikolaou, V.; Anastasaki, A.; Alsubaie, F.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Haddleton, D. M. Synthesis of well-defined α, ω-telechelic multiblock copolymers in aqueous medium: In situ generation of α, ω-diols. Polym. Chem. 2015, 6, 2226-2233.  doi: 10.1039/C4PY01802H

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    6. [6]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    7. [7]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    8. [8]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    9. [9]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    10. [10]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    11. [11]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    16. [16]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    17. [17]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    18. [18]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    19. [19]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    20. [20]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

Metrics
  • PDF Downloads(0)
  • Abstract views(599)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return