Citation: Sheng-Chao Chai, Tian-Yang Xu, Xiao Cao, Gang Wang, Quan Chen, Hao-Long Li. Ultrasmall Nanoparticles Diluted Chain Entanglement in Polymer Nanocomposites[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 797-805. doi: 10.1007/s10118-019-2262-8 shu

Ultrasmall Nanoparticles Diluted Chain Entanglement in Polymer Nanocomposites

  • Corresponding author: Quan Chen, qchen@ciac.ac.cn Hao-Long Li, hl_li@jlu.edu.cn
  • Received Date: 1 February 2019
    Revised Date: 12 March 2019
    Available Online: 25 April 2019

  • Nanoparticle-polymer composites exhibit unusual mechanical properties and chain dynamics when the nanoparticle size is smaller than the entanglement mesh size of the matrix polymer chains, corresponding to the ultrasmall regime defined by de Gennes. However, the mechanism is still ambiguous due to the lack of suitable model systems. Here, we develop an ultrasmall nanoparticle system by using a bimodal grafting strategy to graft both short alkyl chains and long polystyrene chains onto the polyoxometalate molecular nanoparticles with a tunable repulsive potential between the nanoparticles, thus facilitating their uniform dispersion in polystyrene matrices. Linear viscoelasticity of the resultant nanocomposites changes with increasing the filler content, which shows a decrease in both plateau modulus and terminal relaxation time, indicative of a dilution effect of the nanoparticles. Namely, the entanglement network becomes sparser with increasing the filler content.
  • 加载中
    1. [1]

      Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314, 1107-1110.  doi: 10.1126/science.1130557

    2. [2]

      Kumar, S. K.; Benicewicz, B. C.; Vaia, R. A.; Winey, K. I. 50th Anniversary perspective: Are polymer nanocomposites practical for applications? Macromolecules 2017, 50, 714-731.  doi: 10.1021/acs.macromol.6b02330

    3. [3]

      Raftopoulos, K. N.; Pielichowski, K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog. Polym. Sci. 2016, 52, 136-187.  doi: 10.1016/j.progpolymsci.2015.01.003

    4. [4]

      Einstein, A. On the theory of Brownian movement. Ann. Phys. 1906, 19, 371-381.

    5. [5]

      Batchelor, G. K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 1977. 83, 97-117.  doi: 10.1017/S0022112077001062

    6. [6]

      Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Horn, B. V.; Kim, H. C.; Hawker, C. J. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2003, 2, 762-766.  doi: 10.1038/nmat999

    7. [7]

      Tuteja, A.; Mackay, M. E.; Hawker, C. J.; Horn, B. V. Effect of Ideal, Organic Nanoparticles on the Flow Properties of Linear Polymers: Non-Einstein-like Behavior. Macromolecules 2005, 38, 8000-8011.  doi: 10.1021/ma050974h

    8. [8]

      Nusser, K.; Schneider, G. J.; Pyckhout-Hintzen, W.; Richter, D. Viscosity decrease and reinforcement in polymer-silsesquioxane composites. Macromolecules 2011, 44, 7820-7830.  doi: 10.1021/ma201585v

    9. [9]

      Goldansaz, H.; Goharpey, F.; Afshar-Taromi, F.; Kim, I.; Stadler, F. J.; Ruymbeke, E. V.; Karimkhani, V. Anomalous rheological behavior of dendritic nanoparticle/linear polymer nanocomposites. Macromolecules 2015, 48, 3368-3375.  doi: 10.1021/acs.macromol.5b00390

    10. [10]

      Mangal, R.; Srivastava, S.; Archer, L. A. Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat. Commun. 2015, 6, 7198.  doi: 10.1038/ncomms8198

    11. [11]

      Wyart, F. B.; de Gennes, P. G. Viscosity at small scales in polymer melts. Eur. Phys. J. E 2000, 1, 93-97.  doi: 10.1007/s101890050011

    12. [12]

      Cai, L. H.; Panyukov, S.; Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 2011, 44, 7853-7863.  doi: 10.1021/ma201583q

    13. [13]

      Yamamoto, U.; Schweizer, K. S. Theory of nanoparticle diffusion in unentangled and entangled polymer melts. J. Chem. Phys. 2011, 135, 224902.  doi: 10.1063/1.3664863

    14. [14]

      Kalathi, J. T.; Yamamoto, U.; Schweizer, K. S.; Grest, G. S.; Kumar, S. K. Nanoparticle diffusion in polymer nanocomposites. Phys. Rev. Lett. 2014, 112, 108301.  doi: 10.1103/PhysRevLett.112.108301

    15. [15]

      Yamamoto, U.; Schweizer, K. S. Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 2014, 48, 152-163.

    16. [16]

      Chen, T.; Qian, H. J.; Lu, Z. Y. Note: Chain length dependent nanoparticle diffusion in polymer melt: Effect of nanoparticle softness. J. Chem. Phys. 2016, 145, 106101.  doi: 10.1063/1.4962370

    17. [17]

      Frischknecht, A. L.; McGarrity, E. S.; Mackay, M. E. Expanded chain dimensions in polymer melts with nanoparticle fillers. J. Chem. Phys. 2010, 132, 204901.  doi: 10.1063/1.3428760

    18. [18]

      Li, Y.; Kroger, M.; Liu, W. K. Nanoparticle effect on the dynamics of polymer chains and their entanglement network. Phys. Rev. Lett. 2012, 109, 118001.  doi: 10.1103/PhysRevLett.109.118001

    19. [19]

      Kalathi, J. T.; Grest, G. S.; Kumar, S. K. Universal viscosity behavior of polymer nanocomposites. Phys. Rev. Lett. 2012, 109, 198301.  doi: 10.1103/PhysRevLett.109.198301

    20. [20]

      Senses, E.; Ansar, S. M.; Kitchens, C. L.; Mao, Y.; Narayanan, S.; Natarajan, B.; Faraone, A. Small particle driven chain disentanglements in polymer nanocomposites. Phys. Rev. Lett. 2017, 118, 147801.  doi: 10.1103/PhysRevLett.118.147801

    21. [21]

      Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736-1758.  doi: 10.1002/anie.v49:10

    22. [22]

      Zhang, J.; Liu, Y.; Li, Y.; Zhao, H.; Wan, X. Hybrid assemblies of Eu-containing polyoxometalates and hydrophilic block copolymers with enhanced emission in aqueous solution. Angew. Chem. Int. Ed. 2012, 124, 4676-4680.  doi: 10.1002/ange.201107481

    23. [23]

      Liao, Y.; Liu, N.; Zhang, Q.; Bu, W. Self-assembly of polyoxometalate-based starlike polymers in solvents of variable quality: From free-standing sheet to vesicle. Macromolecules 2014, 47, 7158-7168.  doi: 10.1021/ma501343s

    24. [24]

      Tan, C.; Liu, N.; Yu, B.; Zhang, C.; Bu, W.; Liu, X.; Song, Y. F. Organic-inorganic hybrids formed by polyoxometalate-based surfactants with cationic polyelectrolytes and block copolymers. J. Mater. Chem. C 2015, 3, 2450-2454.  doi: 10.1039/C4TC02971B

    25. [25]

      Ma, C.; Wu, H.; Huang, Z. H.; Guo, R. H.; Hu, M. B.; Kubel, C.; Yan, L. T.; Wang, W. A Filled-honeycomb-structured crystal formed by self-assembly of a Janus polyoxometalate-silsesquioxane (POM-POSS) co-cluster. Angew. Chem. Int. Ed. 2015, 54, 15699-15704.  doi: 10.1002/anie.201507237

    26. [26]

      Hou, X. S.; Zhu, G. L.; Ren, L. J.; Huang, Z.; Zhang, R. B.; Ungar, G.; Yan, L. T.; Wang, W. Mesoscale graphene-like honeycomb mono- and multi-layers constructed via self-assembly of co-clusters. J. Am. Chem. Soc. 2017, 140, 1805-1811.

    27. [27]

      Li, D.; Jia, X.; Cao, X.; Xu, T.; Li, H.; Qian, H.; Wu, L. Controllable nanostructure formation through enthalpy-driven assembly of polyoxometalate clusters and block copolymers. Macromolecules 2015, 48, 4104-4114.  doi: 10.1021/acs.macromol.5b00712

    28. [28]

      Wang, S.; Li, H.; Li, D.; Xu, T.; Zhang, S.; Dou, X.; Wu, L. Noncovalent functionalization of graphene nanosheets with cluster-cored star polymers and their reinforced polymer coating. ACS Macro Lett. 2015, 4, 974-978.  doi: 10.1021/acsmacrolett.5b00287

    29. [29]

      Zhang, L.; Cui, T.; Cao, X.; Zhao, C.; Chen, Q.; Wu, L.; Li, H. Inorganic-macroion-induced formation of bicontinuous block copolymer nanocomposites with enhanced conductivity and modulus. Angew. Chem. Int. Ed. 2017, 56, 9013-9017.  doi: 10.1002/anie.201702785

    30. [30]

      Zhang, W. B.; Yu, X.; Wang, C. L.; Sun, H. J.; Hsieh, I. F.; Li, Y.; Dong, X. H.; Yue, K.; Horn, R. V.; Cheng, S. Z. D. Molecular nanoparticles are unique elements for macromolecular science: From " nanoatoms” to giant molecules. Macromolecules 2014, 47, 1221-1239.  doi: 10.1021/ma401724p

    31. [31]

      Zhang, W. B.; Cheng, S. Z. D. Toward rational and modular molecular design in soft matter engineering. Chinese J. Polym. Sci. 2015, 33, 797-814.  doi: 10.1007/s10118-015-1653-8

    32. [32]

      Li, H.; Qi, W.; Li, W.; Sun, H.; Bu, W.; Wu, L. A highly transparent and luminescent hybrid based on the copolymerization of surfactant-encapsulated polyoxometalate and methyl methacrylate. Adv. Mater. 2005, 17, 2688-2692.  doi: 10.1002/(ISSN)1521-4095

    33. [33]

      Baker, L. C. W.; McCutcheon, T. P. Heteropoly salts containing cobalt and hexavalent tungsten in the anion. J. Am. Chem. Soc. 1956, 78, 4503-4510.  doi: 10.1021/ja01599a001

    34. [34]

      Li, D.; Li, H.; Wu, L. Structurally dependent self-assembly and luminescence of polyoxometalate-cored supramolecular star polymers. Polym. Chem. 2014, 5, 1930-1937.  doi: 10.1039/C3PY01349A

    35. [35]

      Judeinstein, P. Synthesis and Properties of polyoxometalates based inorganic-organic polymers. Chem. Mater. 1992, 4, 4-7.  doi: 10.1021/cm00019a002

    36. [36]

      Moore, A. R.; Kwen, H.; Beatty, A. M.; Maatta, E. A. Organoimido-polyoxometalates as polymer pendants. Chem. Commun. 2000, 18, 1793-1794.

    37. [37]

      Han, Y.; Xiao, Y.; Zhang, Z.; Liu, Bo.; Zheng, P.; He, S.; Wang, W. Synthesis of polyoxometalate-polymer hybrid polymers and their hybrid vesicular assembly. Macromolecules 2009, 42, 6543-6548.  doi: 10.1021/ma9011686

    38. [38]

      Miao, W.-K.; Yan, Y.-K.; Wang, X.-L.; Xiao, Y.; Ren, L. J.; Zheng, P.; Wang, C. H.; Ren, L. X.; Wang, W. Incorporation of polyoxometalates into polymers to create linear poly(polyoxometalate)s with catalytic function. ACS Macro Lett. 2014, 3, 211-215.  doi: 10.1021/mz5000202

    39. [39]

      Tang, J.; Yu, W.; Hu, M.-B.; Xiao, Yu.; Wang, X.-G.; Ren, L.-J.; Zheng, P.; Zhu, W.; Chen, Y.; Wang, W. Bottom-up hybridization: A strategy for the preparation of a thermostable polyoxometalate-polymer hybrid with hierarchical hybrid structures. ChemPlusChem 2014, 79, 1455-1462.  doi: 10.1002/cplu.201402092

    40. [40]

      Tang, J.; Ma, C.; Li, X.-Y.; Ren, L.-J.; Wu, H.; Zheng, P.; Wang W. Self-assembling a polyoxometalate-peg hybrid into a nanoenhancer to tailor PEG properties. Macromolecules 2015, 48, 2723-2730.  doi: 10.1021/acs.macromol.5b00214

    41. [41]

      Tang, J.; Li, X. Y.; Wu, H.; Ren, L. J.; Zhang, Y.-Q.; Yao, H.-X.; Hu, M. B.; Wang, W. Tube-graft-sheet nano-objects created by a stepwise self-assembly of polymer-polyoxometalate hybrids. Langmuir 2016, 32, 460-467.  doi: 10.1021/acs.langmuir.5b04504

    42. [42]

      Qi, W.; Wu, L. Polyoxometalate/polymer hybrid materials: Fabrication and properties. Polym. Int. 2009, 58, 1217-1225.  doi: 10.1002/pi.v58:11

    43. [43]

      Wu, H.; Yang, H.-K.; Wang, W. Covalently-linked polyoxometalate-polymer hybrids: Optimizing synthesis, appealing structures and prospective applications. New J. Chem. 2016, 40, 886-897.  doi: 10.1039/C5NJ01257K

    44. [44]

      Yan, J.; Zheng, X.; Yao, J.; Xu, P.; Miao, Z.; Li, J.; Lv, Z.; Zhang, Q.; Yan, Y. Metallopolymers from organically modified polyoxometalates(MOMPs): A review. J. Organomet. Chem. 2019, 884, 1-16.  doi: 10.1016/j.jorganchem.2019.01.012

    45. [45]

      Zhang, S.; Xu, T.; Chai, S.; Zhang, L.; Wu, L.; Li, H. Supramolecular star polymer films with tunable honeycomb. Polymer 2017, 117, 306-314.  doi: 10.1016/j.polymer.2017.04.048

    46. [46]

      Rubinstein, M.; Colby, R. H. Polymer physics, Oxford University Press, Oxford, 2003, p. 362

    47. [47]

      Chen, Q.; Uno, A.; Matsumiya, Y.; Watanabe, H. Viscoelastic mode distribution of moderately entangled linear polymers. Nihon Reoroji Gakk. 2010, 38, 187-193.

    48. [48]

      Ferry, J. D. Viscoelastic properties of polymers, Wiley, New York, 1980, p. 264−320

    49. [49]

      Chen, Q.; Matsumiya, Y.; Masubuchi, Y.; Watanabe, H.; Inoue, T. Component dynamics in polyisoprene/poly(4-tert-butylstyrene) miscible blends. Macromolecules 2008, 41, 8694-8711.  doi: 10.1021/ma8013417

    50. [50]

      Chen, Q.; Matsumiya, Y.; Watanabe, H. Dynamics in miscible blends of polyisoprene and poly(p-tert-butyl styrene): Thermo-rheological behavior of components. Polym. J. 2012, 44, 102-114.  doi: 10.1038/pj.2011.33

    51. [51]

      Leblanc, J. L. Rubber-filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 2002, 27, 627-687.  doi: 10.1016/S0079-6700(01)00040-5

    52. [52]

      Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; Sternstein, S. S.; Buehler, M. J. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 2010, 51, 3321-3343.  doi: 10.1016/j.polymer.2010.04.074

    53. [53]

      Jouault, N.; Moll, J. F.; Meng, D.; Windsor, K.; Ramcharan, S.; Kearney, C.; Kumar, S. K. Bound polymer layer in nanocomposites. ACS Macro Lett. 2013, 2, 371-374.  doi: 10.1021/mz300646a

    54. [54]

      Gong, S. S.; Chen, Q.; Moll, J.; Kumar S. K.; Colby, R. H. Segmental dynamics of polymer melts with spherical nanoparticles. ACS Macro Lett. 2014, 3, 773-777.  doi: 10.1021/mz500252f

    55. [55]

      Chen, Q.; Gong, S. S.; Moll, J.; Zhao, D.; Kumar S. K.; Colby, R. H. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett. 2015, 4, 398-402.  doi: 10.1021/acsmacrolett.5b00002

    56. [56]

      Inoue, T.; Nirihisa, Y.; Katashima, T.; Kawasaki, S.; Tada, T. A. Rheo-optical study on reinforcement effect of silica particle filled rubber. Macromolecules 2017, 50, 8072-8082.  doi: 10.1021/acs.macromol.7b01361

  • 加载中
    1. [1]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    4. [4]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    5. [5]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    8. [8]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    9. [9]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    12. [12]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    13. [13]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    14. [14]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    15. [15]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    16. [16]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    17. [17]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    20. [20]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return