Citation: Tian-Fu Li, Yi-Yun Cheng, Yu Wang, Hui Wang, Dong-Feng Chen, Yun-Tao Liu, Li Zhang, Wen-Ze Han, Rong-Deng Liu, Zi-Jun Wang, Chun-Ming Yang, Charl J. Jafta, Daniel Clemens, Uwe Keiderling. Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 827-833. doi: 10.1007/s10118-019-2260-x shu

Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering

  • Dimer impurity in the solution of a generation five (G5) polyamidoamine (PAMAM) dendrimer has been investigated by small-angle neutron scattering (SANS). The existence of dimer impurity in dendrimer solution was evidenced by indirect Fourier transform (IFT) analysis of the SANS data, in which the maximum dimension of particles in solution was found to be about twice the diameter of G5 dendrimer. We then developed an analytical model which accounts for the scattering contribution from both dendrimer monomer and dimer. The experimental data were well fitted by using the established model. The results showed that the amount of dimer impurities is significant for the measured three batches of G5 PAMAM dendrimers.
  • 加载中
    1. [1]

      Tomalia, D. A.; Khanna, S. N. A Systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive mendeleev-like nanoperiodic tables. Chem. Rev. 2016, 116, 2705-2774.  doi: 10.1021/acs.chemrev.5b00367

    2. [2]

      Tomalia, D. A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005, 30, 294-324.  doi: 10.1016/j.progpolymsci.2005.01.007

    3. [3]

      Tomalia, D. A. Interview: An architectural journey: from trees, dendrons/dendrimers to nanomedicine. Nanomedicine 2012, 7, 953-956.  doi: 10.2217/nnm.12.81

    4. [4]

      Zhao, L.; Wu, Q.; Cheng, Y.; Zhang, J.; Wu, J.; Xu, T. High-throughput screening of dendrimer-binding drugs. J. Am. Chem. Soc. 2010, 132, 13182-13184.  doi: 10.1021/ja106128u

    5. [5]

      Wang, H.; Huang, Q.; Chang, H.; Xiao, J.; Cheng, Y. Stimuli-responsive dendrimers in drug delivery. Biomater. Sci. 2016, 4, 375-390.  doi: 10.1039/C5BM00532A

    6. [6]

      Hu, J.; Xu, T.; Cheng, Y. NMR insights into dendrimer-based host-guest systems. Chem. Rev. 2012, 112, 3856-3891.  doi: 10.1021/cr200333h

    7. [7]

      Svenson, S.; Tomalia, D. A. Dendrimers in biomedical applications−reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 2106-2129.  doi: 10.1016/j.addr.2005.09.018

    8. [8]

      Wang, H.; Wang, Y.; Wang, Y.; Hu, J.; Li, T.; Liu, H.; Zhang, Q.; Cheng, Y. Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem. Int. Ed. 2015, 54, 11647-11651.  doi: 10.1002/anie.201501461

    9. [9]

      Wang, M.; Liu, H.; Li, L.; Cheng, Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 2014, 5, 3053.  doi: 10.1038/ncomms4053

    10. [10]

      Cheng, Y. Fluorinated polymers in gene delivery. Acta Polymerica Sinica 2017, 8, 1234-1245.

    11. [11]

      Kallos, G. J.; Tomalia, D. A.; Hedstrand, D. M.; Lewis, S.; Zhou, J. Molecular weight determination of a polyamidoamine starburst polymer by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 383-386.  doi: 10.1002/(ISSN)1097-0231

    12. [12]

      Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 17, 117-132.  doi: 10.1295/polymj.17.117

    13. [13]

      Tolic, L. P.; Anderson, G. A.; Smith, R. D.; Brothers, H. M.; Spindler, R.; Tomalia, D. A. Electrospray ionization fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass StarburstTM dendrimers. Int. J. Mass Spectrom. 1997, 165/166, 405-418.  doi: 10.1016/S0168-1176(97)00161-4

    14. [14]

      Peterson, J.; Allikmaa, V.; Subbi, J.; Pehk, T.; Lopp, M. Structural deviations in poly(amidoamine) dendrimers: A MALDI-TOF MS analysis. Eur. Polym. J. 2003, 39, 33-42.  doi: 10.1016/S0014-3057(02)00188-X

    15. [15]

      Aura, T.; Ungaro, R.; Liu, X.; Chen, C.; Giordano, L.; Peng, L.; Charles, L. Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal. Chim. Acta 2015, 853, 451-459.  doi: 10.1016/j.aca.2014.10.048

    16. [16]

      Mohammad, T. I.; Shi, X.; Balogh, L.; Baker, J. R. HPLC Separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. Anal. Chem. 2005, 77, 2063-2070.  doi: 10.1021/ac048383x

    17. [17]

      Mullen, D. G.; Desai, A.; van Dongen, M. A.; Barash, M.; Baker, J. R.; Banaszak Holl, M. M. Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 2012, 45, 5316.  doi: 10.1021/ma300485p

    18. [18]

      van Dongen, M. A.; Desai, A.; Orr, B. G.; Baker, J. R.; Banaszak Hol, M. M. Quantitative analysis of generation and branch defects in g5 poly(amidoamine) dendrimer. Polymer 2013, 54, 4126-4133.  doi: 10.1016/j.polymer.2013.05.062

    19. [19]

      Likos, C. N. Soft matter with soft particles. Soft Matter 2006, 2, 478-498.  doi: 10.1039/b601916c

    20. [20]

      Caminade, A. M.; Laurent, R.; Majoral, J. P. Characterization of dendrimers. Adv. Drug Deliv. Rev. 2005, 57, 2130-2146.  doi: 10.1016/j.addr.2005.09.011

    21. [21]

      Wang, X.; Guerrand, L.; Wu, B.; Li, X.; Boldon, L.; Chen, W. R. Liu, L. Characterizations of polyamidoamine dendrimers with scattering techniques. Polymers 2012, 4, 600-616.  doi: 10.3390/polym4010600

    22. [22]

      Topp, A.; Bauer, B. J.; Kilmash, K. W.; Spindler, R.; Tomalia, D. A.; Amis, E. J. Effect of solvent quality on the molecular dimensions of PAMAM dendrimers. Macromolecules 1999, 32, 7226-7231.  doi: 10.1021/ma990125s

    23. [23]

      Imae, T.; Funayama, K.; Aoi, K.; Tsutsumiuchi, K.; Okada, M.; Furusaka, M. Small-angle neutron scattering and surface force investigations of poly(amido amine) dendrimer with hydroxyl end groups. Langmuir 1999, 15, 4076-4084.  doi: 10.1021/la9811968

    24. [24]

      Pötschke, D.; Ballauff, M.; Lindner, P.; Fischer, M.; Vögtle, F. Analysis of the structure of dendrimers in solution by small-angle neutron scattering including contrast variation. Macromolecules 1999, 32, 4079-4087.  doi: 10.1021/ma982027x

    25. [25]

      Rosenfeldt, S.; Dingenouts, N.; Ballauff, M.; Werner, N.; Vögtle, F.; Lindner, P. Distribution of end groups within a dendritic structure: A SANS study including contrast variation. Macromolecules 2002, 35, 8098-8105.  doi: 10.1021/ma020585c

    26. [26]

      Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A. Dynamics of star-burst dendrimers in solution in relation to their structural properties. J. Chem. Phys. 2002, 117, 4047-4062.  doi: 10.1063/1.1493771

    27. [27]

      Huang, Q. R.; Dubin, P. L.; Lal, J.; Moorefield, C. N.; Newkome, G. R. Small-angle neutron scattering studies of charged carboxyl-terminated dendrimers in solutions. Langmuir 2005, 21, 2737-2742.  doi: 10.1021/la048207j

    28. [28]

      Porcar, L.; Liu, Y.; Verduzco, R.; Hong, K.; Butler, P. D.; Magid, L. J.; Smith, G. S.; Chen, W. R. Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J. Phys. Chem. B 2008, 112, 14772-14778.  doi: 10.1021/jp805297a

    29. [29]

      Li, T.; Shao, N.; Liu, Y.; Hu, J.; Wang, Y.; Zhang, L.; Wang, H.; Chen, D.; Cheng, Y. Poly(amidoamine) and poly(propyleneimine) dendrimers show distinct binding behaviors with sodium dodecyl sulfate: insights from SAXS and NMR analysis. J. Phys. Chem. B 2014, 118, 3074-3084.  doi: 10.1021/jp412660p

    30. [30]

      Li, T.; Hong, K.; Porcar, L.; Verduzco, R.; Butler, P. D.; Smith, G. S.; Liu, Y.; Chen, W. R. Assess the intramolecular cavity of a PAMAM dendrimer in aqueous solution by small-angle neutron scattering. Macromolecules 2008, 41, 8916-8920.  doi: 10.1021/ma801555j

    31. [31]

      Chen, W. R.; Porcar, L.; Liu, Y.; Butler, P. D.; Magid, L. J. Small-angle neutron scattering studies of the counterion effects on the molecular conformation and structure of charged G4 PAMAM dendrimers in aqueous solutions. Macromolecules 2007, 40, 5887-5898.  doi: 10.1021/ma0626564

    32. [32]

      Keiderling, U.; Wiedenmann, A. New SANS instrument at the BerII Reactor in Berlin, Germany. Physica B 1995, 213/214, 895-897.  doi: 10.1016/0921-4526(95)00316-2

    33. [33]

      Helmholtz-Zentrum Berlin für Materialien und Energie. V4: The Small-Angle Scattering Instrument (SANS) at BER II. Journal of large-scale research facilities 2016, 2, A97. http://dx.doi.org/10.17815/jlsrf-2-101.  doi: 10.17815/jlsrf-2-101

    34. [34]

      Keiderling, U. The new ‘BerSANS-PC’ software for reduction and treatment of small-angle neutron scattering data. Appl. Phys. A 2002, 74, 1455-1457.  doi: 10.1007/s003390201561

    35. [35]

      Glatter, O. A new method for the evaluation of small-angle scattering data. J. Appl. Cryst. 1977, 10, 415-421.  doi: 10.1107/S0021889877013879

    36. [36]

      Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 1992, 25, 495-503.  doi: 10.1107/S0021889892001663

    37. [37]

      Chen, S. H. Small-angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems. Annu. Rev. Phys. Chem. 1986, 37, 351-399.  doi: 10.1146/annurev.pc.37.100186.002031

    38. [38]

      Guinier, A.; Fournet, G. Small-angle scattering of X-rays. John Wiley & Sons, New York, 1955, p. 1−78.

  • 加载中
    1. [1]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    2. [2]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    3. [3]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    4. [4]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    5. [5]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    6. [6]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    7. [7]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

Metrics
  • PDF Downloads(0)
  • Abstract views(640)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return