Citation: Hong-Yan Zhu, Feng Tian, Xiu-Hong Li, Hui-Bin Qiu, Jie Wang. Crystallization and Phase Behavior in Block Copolymer Solution: An in Situ Small Angle X-ray Scattering Study[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1162-1168. doi: 10.1007/s10118-019-2258-4 shu

Crystallization and Phase Behavior in Block Copolymer Solution: An in Situ Small Angle X-ray Scattering Study

  • Amphiphilic diblock copolymers self-assemble into a variety of micellar structures with diverse shapes in selective solvents. Here, we study the concentration and temperature dependence of the packing structure of spherical micelles of a polyisoprene-b-poly(2-vinylpyridine) (PI-b-P2VP) diblock copolymer in toluene using synchrotron radiation small angle X-ray scattering (SR-SAXS) and atomic force microscopy (AFM) techniques. Randomly packed spherical micelles are detected in dilute solutions, while in concentrated solutions, face-centered cubic (FCC), body-centered cubic (BCC) mixed crystal structures, and pure BCC crystal structures are observed with an increase in concentration. In situ SAXS experiments on the FCC/BCC mixed crystal structures reveal a novel FCC/BCC → BCC → Disorder → BCC phase behavior during the thermal annealing process. These results demonstrated that the BCC phase is apparently more stable than the FCC phase in the current sphere-packing system and FCC/BCC is a metastable state. The incompatibility of the PI and P2VP blocks decreases at a higher temperature and renders the variation of domain spacing.
  • 加载中
    1. [1]

      Suo, T.; Yan, D.; Yang, S.; Shi, A. C. A theoretical study of phase behaviors for diblock copolymers in selective solvents. Macromolecules 2009, 42, 6791-6798.  doi: 10.1021/ma900939u

    2. [2]

      Liu, M.; Qiang, Y.; Li, W.; Qiu, F.; Shi, A. C. Stabilizing the frank-kasper phases via binary blends of ab diblock copolymers. ACS Macro Lett. 2016, 5, 1167-1171.  doi: 10.1021/acsmacrolett.6b00685

    3. [3]

      Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969-5985.  doi: 10.1039/c2cs35115c

    4. [4]

      Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. 50th anniversary perspective: Functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 2017, 50, 3439-3463.  doi: 10.1021/acs.macromol.6b02767

    5. [5]

      Lee, S.; Leighton, C.; Bates, F. S. Sphericity and symmetry breaking in the formation of frank-kasper phases from one component materials. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 17723-17731.  doi: 10.1073/pnas.1408678111

    6. [6]

      Noolandi, J.; Hong, K. M. Theory of block copolymer micelles in solution. Macromolecules 1983, 16, 1443-1448.  doi: 10.1021/ma00243a007

    7. [7]

      Choi, S.-H.; Bates, F. S.; Lodge, T. P. Small-angle x-ray scattering of concentration dependent structures in block copolymer solutions. Macromolecules 2014, 47, 7978-7986.  doi: 10.1021/ma5016819

    8. [8]

      Simone, P. M.; Lodge, T. P. Phase behavior and ionic conductivity of concentrated solutions of polystyrene-poly(ethylene oxide) diblock copolymers in an ionic liquid. ACS Appl. Mater. Interfaces 2009, 1, 2812-2820.  doi: 10.1021/am900555f

    9. [9]

      McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Disorder-order transitions in soft sphere polymer micelles. Phys. Rev. Lett. 1993, 71, 2102-2105.  doi: 10.1103/PhysRevLett.71.2102

    10. [10]

      Ito, M. M. M.; Ito, K.; Shibayama, M.; Sugiyama, K.; Yokoyama, H. Phase behavior of block copolymers in selective supercritical solvent. Macromolecules 2015, 48, 3590-3597.  doi: 10.1021/acs.macromol.5b00162

    11. [11]

      Takagi, H.; Hashimoto, R.; Igarashi, N.; Kishimoto, S.; Yamamoto, K. Frank-kasper sigma phase in polybutadiene-poly(epsilon-caprolactone) diblock copolymer/polybutadiene blends. J. Phys. Condens. Matter 2017, 29, 204002.  doi: 10.1088/1361-648X/aa6908

    12. [12]

      Blanazs, A.; Warren, N. J.; Lewis, A. L.; Armes, S. P.; Ryan, A. J. Self-assembly of double hydrophilic block copolymers in concentrated aqueous solution. Soft Matter 2011, 7, 6399-6403.  doi: 10.1039/c1sm05771e

    13. [13]

      Virgili, J. M.; Hexemer, A.; Pople, J. A.; Balsara, N. P.; Segalman, R. A. Phase behavior of polystyrene-block-poly(2-vinylpyridine) copolymers in a selective ionic liquid solvent. Macromolecules 2009, 42, 4604-4613.  doi: 10.1021/ma900483n

    14. [14]

      Dorin, R. M.; Marques, D. S.; Sai, H.; Vainio, U.; Phillip, W. A.; Peinemann, K.-V.; Nunes, S. P.; Wiesner, U. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes. ACS Macro Lett. 2012, 1, 614-617.  doi: 10.1021/mz300100b

    15. [15]

      Kim, K.; Schulze, M. W.; Arora, A.; Lewis, R. M.; Hillmyer, M. A.; Dorfman, K. D.; Bates, F. S. Thermal processing of diblock copolymer melts mimics metallurgy. Science 2017, 356, 520-523.  doi: 10.1126/science.aam7212

    16. [16]

      Chen, L.; Lee, H. S.; Lee, S. Close-packed block copolymer micelles induced by temperature quenching. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 7218-7223.  doi: 10.1073/pnas.1801682115

    17. [17]

      Chu, C.-Y.; Pei, R.-Y.; Chen, H.-L. Order-order transition from ordered bicontinuous double diamond to hexagonally packed cylinders in stereoregular diblock copolymer/homopolymer blends. Macromolecules 2018, 51, 8493-8500.  doi: 10.1021/acs.macromol.8b01570

    18. [18]

      Gillard, T. M.; Lee, S.; Bates, F. S. Dodecagonal quasicrystalline order in a diblock copolymer melt. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 5167-5172.  doi: 10.1073/pnas.1601692113

    19. [19]

      Lewis, R. M.; Arora, A.; Beech, H. K.; Lee, B.; Lindsay, A. P.; Lodge, T. P.; Dorfman, K. D.; Bates, F. S. Role of chain length in the formation of frank-kasper phases in diblock copolymers. Phys. Rev. Lett. 2018, 121, 208002.  doi: 10.1103/PhysRevLett.121.208002

    20. [20]

      Fischer, S.; Exner, A.; Zielske, K.; Perlich, J.; Deloudi, S.; Steurer, W.; Lindner, P.; Forster, S. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 1810-1814.  doi: 10.1073/pnas.1008695108

    21. [21]

      Kim, K.; Arora, A.; Lewis, R. M., ; Liu, M.; Li, W.; Shi, A. C.; Dorfman, K. D.; Bates, F. S. Origins of low-symmetry phases in asymmetric diblock copolymer melts. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 847-854.  doi: 10.1073/pnas.1717850115

    22. [22]

      Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. Anionic polymerization: High vacuum techniques. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3211-3234.  doi: 10.1002/(ISSN)1099-0518

    23. [23]

      Auschra, C.; Stadler, R. Synthesis of block copolymers with poly(methyl methacrylate)-p(B-B-MMA), p(EB-B-MMA), p(S-B-B-B-MMA) and p(S-B-EB-B-MMA). Polym. Bull. 1993, 30, 257-264.  doi: 10.1007/BF00343058

    24. [24]

      Tian, F.; Li, X. H.; Wang, Y. Z.; Yang, C. M.; Zhou, P.; Lin, J. Y.; Zeng, J. R.; Hong, C. X.; Hua, W. Q.; Li, X. Y. Small angle X-ray scattering beamline at ssrf. Nucl. Sci. Technol. 2015, 26, 030101.

    25. [25]

      Zeng, J.; Bian, F.; Wang, J.; Li, X.; Wang, Y.; Tian, F.; Zhou, P. Performance on absolute scattering intensity calibration and protein molecular weight determination at bl16b1, a dedicated saxs beamline at ssrf. J. Synchrotron Rad. 2017, 24, 509-520.  doi: 10.1107/S1600577516019135

    26. [26]

      Li, N.; Li, X.; Wang, Y.; Liu, G.; Zhou, P.; Wu, H.; Hong, C.; Bian, F.; Zhang, R. The new ncpss bl19u2 beamline at the ssrf for small-angle X-ray scattering from biological macromolecules in solution. J. Appl. Cryst. 2016, 49, 1428-1432.  doi: 10.1107/S160057671601195X

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    3. [3]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    4. [4]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    5. [5]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    9. [9]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    10. [10]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    13. [13]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    16. [16]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    17. [17]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    18. [18]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    19. [19]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    20. [20]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

Metrics
  • PDF Downloads(0)
  • Abstract views(602)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return