Citation: Xiaoteng Ma, Guangda Han, Hanying Zhao. Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 790-796. doi: 10.1007/s10118-019-2253-9 shu

Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface

  • Corresponding author: Hanying Zhao, hyzhao@nankai.edu.cn
  • † These authors contributed equally to this manuscript (X. M. and G. H.)
  • Received Date: 28 January 2019
    Revised Date: 3 March 2019
    Accepted Date: 1 January 2019
    Available Online: 12 April 2019

  • In these years, the encapsulation of proteins for protection and delivery purpose has attracted great interest. In this research, W/O emulsion droplets were used as soft templates and bovine serum albumin (BSA) encapsulated hollow capsules were prepared by liquid-liquid interfacial thiol-disulfide exchange reaction. Block copolymer chains with pendant pyridyl disulfide groups are located at liquid-liquid interface, and upon addition of a macromolecular crosslinking agent with multiple pendant thiol groups into an emulsion, thiol-disulfide interfacial crosslinking reactions lead to the formation of BSA encapsulated hollow capsules. The cleavage of disulfides on the membranes results in the degradation of hollow structures and the release of encapsulated protein molecules. Transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and confocal laser scanning microscopy were employed to characterize the hollow capsules. In comparison with native BSA, BSA molecules encapsulated in the hollow structures show higher catalytic efficiency due to higher local concentration of reactants in the structures. The membranes of the hollow capsules can efficiently protect the encapsulated BSA from hydrolysis by trypsin.
  • 加载中
    1. [1]

      Caruso, F. Hollow capsule processing through colloidal templating and self-assembly. Chem. Eur. J. 2000, 6, 413-419. https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9  doi: 10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9

    2. [2]

      Tao, X.; Li, J.; Möhwald, H. Self-assembly, optical behavior, and permeability of a novel capsule based on an azo dye and polyelectrolytes. Chem. Eur. J. 2004, 10, 3397-3403. https://doi.org/10.1002/chem.200400024  doi: 10.1002/chem.200400024

    3. [3]

      Giersig, M.; Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv. Mater. 1997, 9, 570-575. https://doi.org/10.1002/adma.19970090712  doi: 10.1002/adma.19970090712

    4. [4]

      Walsh, D.; Mann, S. Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature 1995, 377, 320-323. https://doi.org/10.1038/377320a0  doi: 10.1038/377320a0

    5. [5]

      Zhang, Q.; Wang, W.; Goebl, J.; Yin, Y. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494-507. https://doi.org/10.1016/j.nantod.2009.10.008  doi: 10.1016/j.nantod.2009.10.008

    6. [6]

      Tian, J.; Liu, G.; Guan, C.; Zhao, H. Amphiphilic gold nanoparticles formed at a liquid-liquid interface and fabrication of hybrid nanocapsules based on interfacial UV photodimerization. Polym. Chem. 2013, 4, 1913-1920. https://doi.org/10.1039/C2PY20967E  doi: 10.1039/C2PY20967E

    7. [7]

      Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater. 2001, 13, 109-116. https://pubs.acs.org/doi/abs/10.1021/cm001164h  doi: 10.1021/cm001164h

    8. [8]

      Imhof, A. Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir. 2001, 17, 3579-3585. https://pubs.acs.org/doi/abs/10.1021/la001604j  doi: 10.1021/la001604j

    9. [9]

      Lou, X.; Archer, L. A.; Yang, Z. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987-4019. https://doi.org/10.1002/adma.200800854  doi: 10.1002/adma.200800854

    10. [10]

      Tian, J.; Yuan, L.; Zhang, M.; Zheng, F.; Xiong, Q.; Zhao, H. Interface-directed self-assembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization. Langmuir 2012, 28, 9365-9371. https://pubs.acs.org/doi/10.1021/la301453n  doi: 10.1021/la301453n

    11. [11]

      Sun, Y.; Mayers, B. T.; Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481?485. https://pubs.acs.org/doi/abs/10.1021/nl025531v  doi: 10.1021/nl025531v

    12. [12]

      Peng, S.; Sun, S. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. 2007, 46, 4233-4236. https://doi.org/10.1002/ange.200700677  doi: 10.1002/ange.200700677

    13. [13]

      Hu, Y.; Ge, J.; Sun, Y.; Zhang, T.; Yin, Y. A self-templated approach to TiO2 microcapsules. Nano Lett. 2007, 7, 1832-1836. https://pubs.acs.org/doi/abs/10.1021/nl0708157  doi: 10.1021/nl0708157

    14. [14]

      Li, Y.; Li, X.; Li, Y.; Liu, H.; Wang, S.; Gan, H.; Li, J.; Wang, N.; He, X.; Zhu, D. Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: From multibilayer vesicles to hollow capsules. Angew. Chem. Int. Ed. 2006, 45, 3639-3643. https://doi.org/10.1002/anie.200600554  doi: 10.1002/anie.200600554

    15. [15]

      McDonald, C. J.; Bouck, K.J.; Chaput, A. B.; Stevens, C. J. Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules 2000, 33, 1593-1605. https://pubs.acs.org/doi/full/10.1021/ma991284e  doi: 10.1021/ma991284e

    16. [16]

      Zoldesi, C. I.; Imhof, A. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater. 2005, 17, 924-928.  doi: 10.1002/(ISSN)1521-4095

    17. [17]

      Gao, G.; Park, M. J.; Li, Y.; Im, G. H.; Kim, J-H.; Kim, H. N.; Lee, J. W.; Jeon, P.; Bang, O. Y.; Lee, J. H.; Lee, D. S. The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials 2012, 33, 9157-9164. https://doi.org/10.1016/j.biomaterials.2012.09.016  doi: 10.1016/j.biomaterials.2012.09.016

    18. [18]

      Gu, W.; Zhu, M.; Song, N.; Du, X.; Yang, Y.; Gao, H. Reverse micelles based on biocompatible β-cyclodextrin conjugated polyethylene glycol block polylactide for protein delivery. J. Mater. Chem. B 2015, 3, 316-322. http://dx.doi.org/10.1039/C4TB01351D  doi: 10.1039/C4TB01351D

    19. [19]

      Loh, X. J.; del Barrio, J.; Lee, T. C.; Scherman, O. A. Supramolecular polymeric peptide amphiphile vesicles for the encapsulation of basic fibroblast growth factor. Chem. Commun. 2014, 50, 3033-3035. http://dx.doi.org/10.1039/c3cc49074b  doi: 10.1039/c3cc49074b

    20. [20]

      van Hoof, B.; Markvoort, A. J.; van Santen, R. A.; Hilbers, P. A. J.; Molecular simulation of protein encapsulation in vesicle formation. J. Phys. Chem. B. 2014, 118, 3346-3354. http://dx.doi.org/10.1021/jp410612k  doi: 10.1021/jp410612k

    21. [21]

      Mable, C. J.; Gibson, R. R.; Prevost, S.; McKenzie, B. E.; Mykhaylyk, O. O.; Armes, S. P. Loading of silica nanoparticles in block copolymer vesicles during polymerization-induced self-assembly: Encapsulation efficiency and thermally triggered release. J. Am. Chem. Soc. 2015, 137, 16098-16108. http://dx.doi.org/10.1021/jacs.5b10415  doi: 10.1021/jacs.5b10415

    22. [22]

      Qi, H.; Hu, P.; Xu, J.; Wang, A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 2006, 7, 2327-2330. http://dx.doi.org/10.1021/bm060264z  doi: 10.1021/bm060264z

    23. [23]

      Conn, C. E.; Drummond, C. J. Nanostructured bicontinuous cubic lipid self-assembly materials as matrices for protein encapsulation. Soft Matter 2013, 9, 3449-3464. http://dx.doi.org/10.1039/c3sm27743g  doi: 10.1039/c3sm27743g

    24. [24]

      Tan, Y. C.; Hettiarachchi, K.; Siu, M.; Pan, Y. R.; Lee, A. P. Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc. 2006, 128, 5656-5658. http://dx.doi.org/10.1021/ja056641h  doi: 10.1021/ja056641h

    25. [25]

      Silva, R.; Fabry, B.; Boccaccini, A. R. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 2014, 35, 6727-6738. https://doi.org/10.1016/j.biomaterials.2014.04.078  doi: 10.1016/j.biomaterials.2014.04.078

    26. [26]

      Censi, R.; Di Martino, P.; Vermonden, T.; Hennink, W. E. Hydrogels for protein delivery in tissue engineering. J. Control. Release 2012, 161, 680-692. https://doi.org/10.1016/j.jconrel.2012.03.002  doi: 10.1016/j.jconrel.2012.03.002

    27. [27]

      Bertz, A.; Wohl-Bruhn, S.; Miethe, S.; Tiersch, B.; Koetz, J.; Hust, M.; Bunjes, H.; Menzel, H. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: Influence of network structure and drug size on release rate. J. Biotechnol. 2013, 163, 243-249. https://doi.org/10.1016/j.jbiotec.2012.06.036  doi: 10.1016/j.jbiotec.2012.06.036

    28. [28]

      Kim, C. S.; Mout, R.; Zhao, Y.; Yeh, Y. C.; Tang, R.; Jeong, Y.; Duncan, B.; Hardy, J. A.; Rotello, V. M. Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules. Bioconjugate Chem. 2015, 26, 950-954. https://doi.org/10.1021/acs.bioconjchem.5b00146  doi: 10.1021/acs.bioconjchem.5b00146

    29. [29]

      Zhang, W.; Zhang, J.; Qiao, Z.; Yin, J. Functionally oriented tumor microenvironment responsive polymeric nanoassembly: Engineering and applications. Chinese J. Polym. Sci. 2018, 36, 273-287. https://doi.org/10.1007/s10118-018-2035-9  doi: 10.1007/s10118-018-2035-9

    30. [30]

      Han, G.; Ju, Y.; Zhao, H. Synthesis of amphiphilic block-type macromolecular brushes with cleavable pendant chains and fabrication of micelle-templated polymer nanocapsules. Polym. Chem. 2016, 7, 1197-1206. https://doi.org/10.1039/C5PY01940K  doi: 10.1039/C5PY01940K

    31. [31]

      Peters, R. J. R. W.; Marguet, M.; Marais, S.; Fraaije, M. W.; van Hest, J. C. M.; Lecommandoux, S. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. 2014, 53, 146-150. http://dx.doi.org/10.1002/anie.201308141  doi: 10.1002/anie.201308141

    32. [32]

      Feng, X.; Liu, J.; Xu, G.; Zhang, X.; Su, X.; Li, W.; Zhang, A. Thermoresponsive double network cryogels from dendronized copolymers showing tunable encapsulation and release of proteins. J. Mater. Chem. B. 2018, 6, 1903-1911. http://dx.doi.org/10.1039/C7TB03352D  doi: 10.1039/C7TB03352D

    33. [33]

      Prasetyanto, E. A.; Bertucci, A.; Septiadi, D.; Corradini, R.; Castro-Hartmann, P.; De Cola, L. Breakable hybrid organosilica nanocapsules for protein delivery. Angew. Chem. 2016, 55, 3323-3327. https://doi.org/10.1002/ange.201508288  doi: 10.1002/ange.201508288

    34. [34]

      Shimanovich, U.; Michaels, T. C. T.; De Genst, E.; Matak-Vinkovic, D.; Dobson, C. M.; Knowles, T. P. J. Sequential release of proteins from structured multishell microcapsules. Biomacromolecules, 2017, 18, 3052-3059. https://doi.org/10.1021/acs.biomac.7b00351  doi: 10.1021/acs.biomac.7b00351

    35. [35]

      Liu, Q.; Ju, Y.; Zhao, H. Bioassemblies fabricated by coassembly of protein molecules and monotethered single-chain polymeric nanoparticles. Langmuir. 2018, 34, 13705?13712. https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02895  doi: 10.1021/acs.langmuir.8b02895

    36. [36]

      Córdova, J.; Ryan, J. D.; Boonyaratanakornkit, B. B.; Clark, D. S. Esterase activity of bovine serum albumin up to 160°C: A new benchmark for biocatalysis. Enzyme Microb. Technol. 2008, 42, 278-283. https://doi.org/10.1016/j.enzmictec.2007.10.007  doi: 10.1016/j.enzmictec.2007.10.007

    37. [37]

      Grochmal, A.; Prout, L.; Makin-Taylor, R.; Prohens, R.; Tomas, S. Modulation of reactivity in the cavity of liposomes promotes the formation of peptide bonds. J. Am. Chem. Soc. 2015, 137, 12269-12275. https://doi.org/10.1021/jacs.5b06207  doi: 10.1021/jacs.5b06207

    38. [38]

      Minton, A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences. Mol. Cell. Biochem. 1983, 55, 119-140. https://doi.org/10.1007/BF00673707  doi: 10.1007/BF00673707

    39. [39]

      Han, G.; Wang, J. T.; Ji, X.; Liu, L.; Zhao, H. Nanoscale proteinosomes fabricated by self-assembly of a supramolecular protein-polymer conjugate. Bioconjugate Chem. 2017, 28, 636-641. https://doi.org/10.1021/acs.bioconjchem.6b00704  doi: 10.1021/acs.bioconjchem.6b00704

    40. [40]

      Chen, D.; Hou, W.; Wu, D.; Wu, Y.; Cheng, G.; Zhao, H. Protein-cross-linked triple-responsive polymer networks based on molecular recognition. ACS Macro Lett. 2016, 5, 1222-1226. https://doi.org/10.1021/acsmacrolett.6b00750  doi: 10.1021/acsmacrolett.6b00750

  • 加载中
    1. [1]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    2. [2]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    3. [3]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    4. [4]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    5. [5]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    8. [8]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    9. [9]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    10. [10]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    11. [11]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    14. [14]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    15. [15]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    16. [16]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    17. [17]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    18. [18]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    19. [19]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    20. [20]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

Metrics
  • PDF Downloads(0)
  • Abstract views(633)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return