Citation: Hadi Rezaei-Vahidian, Tohid Farajpour, Mahdi Abdollahi. Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 681-686. doi: 10.1007/s10118-019-2251-y shu

Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate




  • Author Bio: Email: hrvahidian_1984@yahoo.com (Hadi Rezaei-Vahidian)
    tohid20104@yahoo.com (Tohid Farajpour)
    abdollahim@modares.ac.ir (Mahdi abdollahi)
  • Corresponding author: Tohid Farajpour, tohid20104@yahoo.com
  • Received Date: 23 November 2018
    Revised Date: 1 January 2019
    Accepted Date: 1 January 2019
    Available Online: 23 April 2019

  • The loss of adhesion between the propellant and insulator is one of the most important problems in solid propellant motors due to migration of plasticizer to interface of propellant and insulator. In this work, the polyurethane (PU) binder containing DOP plasticizer was used as a polymeric matrix and β-cyclodextrin (β-CD) was applied as inhibitor agent to prevent plasticizer migration from the PU matrix into the ethylene propylene diene monomer (EPDM) substrate. To increase the compatibility of β-CD and PU matrix, a derivative of β-CD has been synthesized using toluene diisocyanate (β-CD-TDI). The synthesized derivative was characterized by MALDI-MS and FTIR-ATR analyses. FTIR-ATR results confirmed the formation of bonding between β-CD and the polymeric network while the MALDI-MS results showed that the synthesized derivative contained two β-CD and 7 TDI molecules bonded to β-CD. Investigation of the mechanical properties of PU modified by β-CD-TDI showed a decrease in tensile strength and an increase in elongation at break with increasing β-CD-TDI content. DMTA results showed a decrement in crosslinking density by increasing the β-CD-TDI content. Also, to investigate plasticizer migration, extraction of the DOP plasticizer from samples was performed using dichloromethane solvent and its concentration was measured by gas chromatography. The results of migration evaluation after four months showed that using β-CD as an inhibitor agent in the PU binder could prevent the migration of plasticizer to EPDM substrate.
  • 加载中
    1. [1]

      Libardi, J.; Ravagnani, S. P.; Morais, A. M. F.; Cardoso, A. R. Study of plasticizer diffusion in a solid rocket motor′ s bondline. J. Aeros. Technol. Manag. 2009, 1, 223-229.  doi: 10.5028/jatm.2009.0102223229

    2. [2]

      Muthiah, R.; Somasundaran, U.; Verghese, T.; Thornas, V. Energetics and compatibility of plasticizers in composite solid propellants. Def. Sci. J. 1989, 39, 147.  doi: 10.14429/dsj.39.4759

    3. [3]

      Kumari, D.; Balakshe, R.; Banerjee, S.; Singh, H. Energetic plasticizers for gun & rocket propellants. Rev. J. Chem. 2012, 2, 240-262.  doi: 10.1134/S207997801203003X

    4. [4]

      Wypych, G. Handbook of Plasticizers. ChemTec Publishing, 2004.

    5. [5]

      Pröbster, M.; Schmucker, R. Ballistic anomalies in solid rocket motors due to migration effects. Acta Astron. 1986, 13, 599-605.  doi: 10.1016/0094-5765(86)90050-0

    6. [6]

      Venkatesan, D.; Srinivasan, M.; Reddy, K. A.; Pendse, V. The migration of plasticizer in solid propellant grains. Polym. Int. 1993, 32, 395-399.  doi: 10.1002/(ISSN)1097-0126

    7. [7]

      Gottlieb, L.; Bar, S. Migration of plasticizer between bonded propellant interfaces. Propel. Explo. Pyrotech. 2003, 28, 12-17.  doi: 10.1002/prep.200390000

    8. [8]

      Agrawal, J.; Singh, H. Qualitative assessment of nitroglycerin migration from double-base and composite modified double-base rocket propellants: Concepts and methods of prevention. Propel. Explos. Pyrotech. 1993, 18, 106-110.  doi: 10.1002/(ISSN)1521-4087

    9. [9]

      Al Salloum, H.; Saunier, J.; Tfayli, A.; Yagoubi, N. Studying DEHP migration in plasticized PVC used for blood bags by coupling Raman confocal microscopy to UV spectroscopy. Mater. Sci. Eng. C 2016, 61, 56-62.  doi: 10.1016/j.msec.2015.12.008

    10. [10]

      Chiellini, F.; Ferri, M.; Morelli, A.; Dipaola, L.; Latini, G. Perspectives on alternatives to phthalate plasticized poly(vinyl chloride) in medical devices applications. Prog. Polym. Sci. 2013, 38, 1067-1088.  doi: 10.1016/j.progpolymsci.2013.03.001

    11. [11]

      Raeisi, A.; Faghihi, K.; Shabanian, M. Designed biocompatible nano-inhibitor based on poly(β-cyclodextrin-ester) for reduction of the DEHP migration from plasticized PVC. Carbohydr. Polym. 2017, 174, 858-868.  doi: 10.1016/j.carbpol.2017.06.105

    12. [12]

      Yu, B. Y.; Chung, J. W.; Kwak, S. Y. Reduced migration from flexible poly(vinyl chloride) of a plasticizer containing β-cyclodextrin derivative. Environ. Sci. Technol. 2008, 42, 7522-7527.  doi: 10.1021/es800895x

    13. [13]

      Yu, B. Y.; Lee, A. R.; Kwak, S. Y. Gelation/fusion behavior of PVC plastisol with a cyclodextrin derivative and an anti-migration plasticizer in flexible PVC. Eur. Polym. J. 2012, 48, 885-895.  doi: 10.1016/j.eurpolymj.2012.02.008

    14. [14]

      Bernard, L.; Décaudin, B.; Lecoeur, M.; Richard, D.; Bourdeaux, D.; Cueff, R.; Sautou, V.; Group, A. S. Analytical methods for the determination of DEHP plasticizer alternatives present in medical devices: A review. Talanta 2014, 129, 39-54.  doi: 10.1016/j.talanta.2014.04.069

    15. [15]

      Yamasaki, H.; Odamura, A.; Makihata, Y.; Fukunaga, K. Preparation of new photo-crosslinked β-cyclodextrin polymer beads. Polym. J. 2017, 49, 377.  doi: 10.1038/pj.2016.127

    16. [16]

      Xie, A.; Zhang, M.; Inoue, S. I. Influence of diisocyanate on polyurethane elastomers which crosslinked by β-cyclodextrin. Ope. J. Org. Pol. Mater. 2016, 6, 99-111.  doi: 10.4236/ojopm.2016.63010

    17. [17]

      Nandi, S.; Winter, H. H. Swelling behavior of partially cross-linked polymers: a ternary system. Macromolecules 2005, 38, 4447-4455.  doi: 10.1021/ma048335e

  • 加载中
    1. [1]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    2. [2]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    3. [3]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    4. [4]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    5. [5]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    6. [6]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    7. [7]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    8. [8]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    9. [9]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

Metrics
  • PDF Downloads(0)
  • Abstract views(799)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return