Citation: Jing Li, Shao-Hua Jin, Guan-Chao Lan, Zi-Shuai Xu, Lu-Ting Wang, Na Wang, Li-Jie Li. Research on the Glass Transition Temperature and Mechanical Properties of Poly(vinyl chloride)/Dioctyl Phthalate (PVC/DOP) Blends by Molecular Dynamics Simulations[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 834-840. doi: 10.1007/s10118-019-2249-5 shu

Research on the Glass Transition Temperature and Mechanical Properties of Poly(vinyl chloride)/Dioctyl Phthalate (PVC/DOP) Blends by Molecular Dynamics Simulations

  • Corresponding author: Li-Jie Li, lilijie2003@bit.edu.cn
  • Received Date: 13 January 2019
    Revised Date: 17 February 2019
    Available Online: 12 April 2019

  • To effectively improve the performance and expand the applications of polymers, molecular dynamics (MD) simulations with the COMPASS force field have been applied to predict the miscibility, glass transition temperature (Tg), and mechanical properties of poly(vinyl chloride)/dioctyl phthalate (PVC/DOP) blends. The solubility parameter values obtained are in good agreement with the reference data and the little difference (|Δδ| < 2.0 MPa0.5) between two components indicates that PVC/DOP is a miscible system. Tg is predicted by the slope of the free volume and density versus temperature simulation data based on density and free volume theory which is agree well with the experimental data. In addition, the analyses of mechanical properties results indicate that the values of Young’s modulus (E), bulk modulus (K), and shear modulus (G) decrease with the addition of DOP, demonstrating that the rigidity of material is weakened and the ductility is improved. The mechanical properties can also be effectively improved by increasing the temperature, which may provide a more flexible mixture, with lower E, K, G but an increased ductility.
  • 加载中
    1. [1]

      Zhou, L. L.; Wang, B. B.; Xiao, L. F.; Liang, J. F. Testing and analysis of properties of PVC plasticized with environment-friendly plasticizers. Chemical Research and Application (in Chinese) 2018, 30(4), 597-601.

    2. [2]

      Li, X. G.; Zhao, J.; Fei, Y. N.; Sun, G. F.; Li, J.; Sui, Z. Y.; Yu, H. B. Synthesis of environmental plasticizer di(2-ethylhexy)-1, 2-cyclohexane dicarboxylate. Journal of Petrochemical Universities (in Chinese) 2013, 26(5), 33-36.

    3. [3]

      Zhang, D. H.; He, M.; Hu, Z.; Guo, J. B. Effect of content of plasticizer DOP on the properties of soft PVC. Plastic Additives (in Chinese) 2015, (2), 43-44.

    4. [4]

      Liu, Y. H.; Xing, G. Q.; Feng, B. L.; Chen, L. Z. Application of environment-friendly plasticizers in PVC gloves. Plastic Additives (in Chinese) 2017, (1), 21-22, 34.

    5. [5]

      Starnes, W. H. Structural defects in poly(vinyl chloride). J. Polym. Sci.; Part A: Polym. Chem. 2005, 43(12), 2451-2467.  doi: 10.1002/pola.20811

    6. [6]

      Hu, W. T.; Li, J. G.; Ding, X. J.; Liu, F. J.; Wei, Y. F. Modification of plasticized PVC with three kinds of modifiers. China Plastics (in Chinese) 2014, 28(7), 60-64.

    7. [7]

      Xu, H. Z.; Tang, W.; Tan, L. L. Advances in research and development of environment-friendly Ca/Zn heat stabilizers complex for PVC. Plastic Additives (in Chinese) 2008, 8(4), 11-15.

    8. [8]

      Li, J.; Jin, S. H.; Lan, G. C.; Chen, S. S.; Li, L. J. Molecular dynamics simulations on miscibility, glass transition temperature and mechanical properties of PMMA/DBP binary system. J. Mol. Graph. Model. 2018, 84, 182-188.  doi: 10.1016/j.jmgm.2018.07.005

    9. [9]

      Luo, Y. L.; Wang, R. G.; Wang, W.; Wang, W.; Zhang, L. Q.; Wu, S. Z. Molecular dynamics simulation insight into two-component solubility parameters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber. J. Phys. Chem. C 2017, 121(18), 10163-10173.  doi: 10.1021/acs.jpcc.7b01583

    10. [10]

      Shu, Y.; Yi, Y.; Huo, J. C.; Liu, N.; Wang, K.; Lu, Y. Y.; Wang, X. C.; Wu, Z. K.; Shu, Y. J.; Zhang, S. W. Interactions between poly-(phthalazinone ether sulfone ketone) (PPESK) and TNT or TATB in polymer bonded explosives: a molecular dynamic simulation study. J. Mol. Model. 2017, 23(12), 334.  doi: 10.1007/s00894-017-3492-8

    11. [11]

      Lan, G. C.; Jin, S. H.; Li, J.; Wang, J. Y.; Lu, Z. Y.; Wu, N. N.; Li, L. J.; Wang, D. X. Miscibility, glass transition temperature and mechanical properties of NC/DBP binary systems by molecular dynamics. Propell. Explos. Pyrot. 2018, 43(6), 559-567.  doi: 10.1002/prep.201700290

    12. [12]

      Song, Y. H.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W. J.; Zheng, Q. Glass transition of poly(methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer 2017, 127, 141-149.  doi: 10.1016/j.polymer.2017.08.038

    13. [13]

      Ju, S. P.; Chen, H. Y.; Shih, C. W. J. Investigating mechanical properties of polymethylmethacrylate/silver nanoparticle composites by molecular dynamics simulation. J. Nanopart. Res. 2017, 20(1), 1.

    14. [14]

      Lee, M. W.; Wang, T. Y.; Tsai, J. L. Mechanical properties of nanocomposites with functionalized graphene. J. Compos. Mater. 2016, 50(27), 3779-3789.  doi: 10.1177/0021998315625788

    15. [15]

      Okabe, T.; Oya, Y.; Tanabe, K.; Kikugawa, G.; Yoshioka, K. Molecular dynamics simulation of crosslinked epoxy resins: Curing and mechanical properties. Eur. Polym. J. 2016, 80, 78-88.  doi: 10.1016/j.eurpolymj.2016.04.019

    16. [16]

      Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with detailed on alkane and benzene compounds. J. Phys. Chem. B 1998, 102(38), 7338-7364.  doi: 10.1021/jp980939v

    17. [17]

      Duan, X. H.; Wei, C. X.; Liu, Y. G.; Pei, C. H. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX. J. Hazard. Mater. 2010, 174(1-3), 175-180.  doi: 10.1016/j.jhazmat.2009.09.033

    18. [18]

      Li, J.; Jin, S. H.; Lan, G. C.; Xu, Z. S.; Wu, N. N.; Chen, S. S.; Li, L. J. The effect of solution conditions on the crystal morphology of β-HMX by molecular dynamics simulations. J. Cryst. Growth 2019, 507, 38-45.  doi: 10.1016/j.jcrysgro.2018.10.056

    19. [19]

      Zhu, W.; Xiao, J. J.; Zhu, W. H.; Xiao, H. M. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J. Hazard. Mater. 2009, 164(2-3), 1082-1088.  doi: 10.1016/j.jhazmat.2008.09.021

    20. [20]

      Lu, Y. Y.; Shu, Y. J.; Liu, N.; Shu, Y.; Wang, K.; Wu, Z. K.; Wang, X. C.; Ding, X. Y. Theoretical simulations on the glass transition temperatures and mechanical properties of modified glycidyl azide polymer. Comp. Mater. Sci. 2017, 139, 132-139.  doi: 10.1016/j.commatsci.2017.07.022

    21. [21]

      Lan, G. C.; Jin, S. H.; Li, J.; Wang, J. Y.; Li, J. X.; Chen, S. S.; Li, L. J. The study of external growth environments on the crystal morphology of ε-HNIW by molecular dynamics simulation. J. Mater. Sci. 2018, 53(18), 12921-12936.  doi: 10.1007/s10853-018-2543-6

    22. [22]

      Basconi, J. E.; Shirts, M. R. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory. Comput. 2013, 9(7), 2887-2899.  doi: 10.1021/ct400109a

    23. [23]

      Kolafa, J.; Lísal, M. Time-reversible velocity predictors for verlet integration with velocity-dependent right-hand side. J. Chem. Theory. Comput. 2011, 7(11), 3596-3607.  doi: 10.1021/ct200108g

    24. [24]

      Rahmati, M.; Modarress, H.; Gooya, R. Molecular simulation study of polyurethane membranes. Polymer 2012, 53(9), 1939-1950.  doi: 10.1016/j.polymer.2012.02.051

    25. [25]

      Kitson, D. H.; Hagler, A. T. Theoretical studies of the structure and molecular dynamics of a peptide crystal. Biochemistry 1988, 27(14), 5246-5257.  doi: 10.1021/bi00414a045

    26. [26]

      Yu, Y. H.; Chen, S. S.; Li, X.; Zhu, J. P.; Liang, H.; Zhang, X. X.; Shu, Q. H. Molecular dynamics simulations for 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) and its PBXs. RSC Adv. 2016, 6(24), 20034-20041.  doi: 10.1039/C5RA27912G

    27. [27]

      Zhang, M. Z.; Choi, P.; Sundararaj, U. Molecular dynamics and thermal analysis study of anomalous thermodynamic behavior of poly(ether imide)/polycarbonate blends. Polymer 2003, 44(6), 1979-1986.  doi: 10.1016/S0032-3861(03)00054-5

    28. [28]

      Hildebrand, J. H.; Scott, R. L., in The solubility of non-electrodytes, New York, Reinhold Publishing Corp, 1950, p.424.

    29. [29]

      Goharshadi, E. K.; Akhlamadi, G.; Mahdizadeh, S. J. Investigation of graphene oxide nanosheets dispersion in water based on solubility parameters: A molecular dynamics simulation study. RSC Adv. 2015, 5(129), 106421-106430.  doi: 10.1039/C5RA19932H

    30. [30]

      Jin, R. G.; Hua, Y. Q., in Polymer physics (in Chinese), Beijing, Chemical Industry Press, 2007, p.74.

    31. [31]

      Forster, A.; Hempenstall, J.; Tucker, I.; Rades, T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 2001, 226(1-2), 147-161.  doi: 10.1016/S0378-5173(01)00801-8

    32. [32]

      Sun, Y. B.; Hui, J. M.; Cao, X. M., in Military use blended explosives (in Chinese), Beijing, Weapon Industry Press, 1995.

    33. [33]

      Yang, Q.; Chen, X.; He, Z. W.; Lan, F. T.; Liu, H. The glass transition temperature measurements of polyethylene: determined by using molecular dynamic method. RSC Adv. 2016, 6(15), 12053-12060.  doi: 10.1039/C5RA21115H

    34. [34]

      Fu, Y. Z.; Hu, S. Q.; Lan, Y. H.; Liu, Y. Q. Molecular dynamics simulation on the glass transition temperature and mechanical properties of HTPB/plasticizer blends. Acta Chim. Sinica 2010, 68(8), 809-813.

    35. [35]

      Jaidann, M.; Abou-Rachid, H.; Lafleur-Lambert, X.; Lussier, L. S.; Gagnon, N.; Brisson, J. Modeling and measurement of glass transition temperatures of energetic and inert systems. Polym. Eng. Sci. 2008, 48(6), 1141-1150.  doi: 10.1002/(ISSN)1548-2634

    36. [36]

      Xu, X. J.; Xiao, J. J.; Huang, H.; Li, J. S.; Xiao, H. M. Molecular dynamic simulations on the structures and properties of ε-CL-20(001)/F-2314 PBX. J. Hazard. Mater. 2010, 175(1-3), 423-428.  doi: 10.1016/j.jhazmat.2009.10.023

    37. [37]

      Watt, J. P.; Davies, G. F.; O’Connell, R. J. The elastic properties of composite materials. Rev. Geophys. Space Phys. 1976, 14, 541-563.  doi: 10.1029/RG014i004p00541

    38. [38]

      Pugh, S. F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. A 1954, 45(367), 823-843.  doi: 10.1080/14786440808520496

  • 加载中
    1. [1]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    4. [4]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    5. [5]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    6. [6]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    9. [9]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    12. [12]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    13. [13]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    14. [14]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    15. [15]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    16. [16]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    20. [20]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

Metrics
  • PDF Downloads(0)
  • Abstract views(627)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return