Citation: Ke Zheng, Jun-Po He. Amphiphilic Dendrimer-like Copolymers with High Chain Density by Living Anionic Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 875-883. doi: 10.1007/s10118-019-2247-7 shu

Amphiphilic Dendrimer-like Copolymers with High Chain Density by Living Anionic Polymerization

  • Corresponding author: Jun-Po He, jphe@fudan.edu.cn
  • Received Date: 9 January 2019
    Revised Date: 25 February 2019
    Accepted Date: 1 January 2019
    Available Online: 12 April 2019

  • We report here a method for the preparation of amphiphilic dendrimer-like copolymers with dendritic polystyrene (PS) core and protonated poly(2-vinyl pyridine) (P2VP) or poly(methacrylic acid) (PMAA) shell. The method employed the efficient coupling reaction of anionic living polymer chains and chlorosilane. The synthesis started from a functionalized 3rd generation dendritic polystyrene, G3PS-g-SiCl, used as the precursor. The dendrimer-like copolymer of styrene and 2-vinyl pyridine, G3PS-g-P2VP, was synthesized by direct coupling of living P2VPLi to the precursor. The dendrimer-like copolymer of styrene and tert-butyl methacrylate, G3PS-g-PtBMA, was synthesized by an indirect procedure in which a living polymer containing mainly PtBMA segment was attached to the precursor. Both methods resulted in the formation of dendrimer-like copolymers with the high molecular weights (up to 8.5 × 106 Da), large molecular sizes (diameter up to 73 nm), and dense shells (number of arms up to 1300). These products, G3PS-g-P2VP and G3PS-g-PtBMA, were protonated with trifluoroacetic acid and acidic hydrolyzed, respectively. After transformation, amphiphilic dendrimer-like copolymers, G3PS-g-P2VPH+ and G3PS-g-PMAA, were obtained. Preliminary results on the solution properties of the amphiphilic products were presented.
  • 加载中
    1. [1]

      Taton, D.; Feng, X.; Gnanou, Y. Dendrimer-like polymers: A new class of structurally precise dendrimers with macromolecular generations. New J. Chem. 2007, 31, 1097-1110.  doi: 10.1039/b618544b

    2. [2]

      Taton, D.; Gnanou, Y.; Matmour, R.; Angot, S.; Hou, S.; Francis, R.; Lepoittevin, B.; Moinard, D.; Babin, J. Controlled polymerizations as tools for the design of star-like and dendrimer-like polymers. Polym. Int. 2006, 55, 1138-1145.  doi: 10.1002/(ISSN)1097-0126

    3. [3]

      Polymeropoulos, G.; Zapsas, G.; Ntetsikas, K.; Bilalis, P.; Gnanou, Y.; Hadjichristidis, N. 50th Anniversary perspective: Polymers with complex architectures. Macromolecules 2017, 50, 1253-1290.  doi: 10.1021/acs.macromol.6b02569

    4. [4]

      Hirao, A.; Goseki, R.; Ishizone, T. Advances in living anionic polymerization: From functional monomers, polymerization systems, to macromolecular architectures. Macromolecules 2014, 47, 1883-1905.  doi: 10.1021/ma401175m

    5. [5]

      Hirao, A.; Yoo, H. S. Dendrimer-like star-branched polymers: Novel structurally well-defined hyperbranched polymers. Polym. J. 2011, 43, 2-17.  doi: 10.1038/pj.2010.109

    6. [6]

      Hirao, A.; Sugiyama, K.; Matsuo, A.; Tsunoda, Y.; Watanabe, T. Synthesis of well-defined dendritic hyperbranched polymers by iterative methodologies using living/controlled polymerizations. Polym. Int. 2008, 57, 554-570.  doi: 10.1002/(ISSN)1097-0126

    7. [7]

      Hirao, A.; Sugiyama, K.; Tsunoda, Y.; Matsuo, A.; Watanabe, T. Precise synthesis of well-defined dendrimer-like star-branched polymers by iterative methodology based on living anionic polymerization. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 6659-6687.  doi: 10.1002/(ISSN)1099-0518

    8. [8]

      Konkolewicz, D.; Monteiro, M. J.; Perrier, S. Dendritic and hyperbranched polymers from macromolecular units: Elegant approaches to the synthesis of functional polymers. Macromolecules 2011, 44, 7067-7087.  doi: 10.1021/ma200656h

    9. [9]

      Grayson, S. M.; Fréchet, J. M. J. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 2001, 101, 3819-3867.  doi: 10.1021/cr990116h

    10. [10]

      Bosman, A. W.; Janssen, H. M.; Meijer, E. W. About dendrimers: Structure, physical properties, and applications. Chem. Rev. 1999, 99, 1665-1688.  doi: 10.1021/cr970069y

    11. [11]

      Six, J. L.; Gnanou, Y. From star-shaped to dendritic poly(ethylene oxide)s: Toward increasingly branched architectures by anionic polymerization. Macromol. Symp. 1995, 95, 137-150.  doi: 10.1002/masy.v95.1

    12. [12]

      Francis, R.; Taton, D.; Logan, J. L.; Masse, P.; Gnanou, Y.; Duran, R. S. Synthesis and surface properties of amphiphilic star-shaped and dendrimer-like copolymers based on polystyrene core and poly(ethylene oxide) corona. Macromolecules 2003, 36, 8253-8259.  doi: 10.1021/ma030258k

    13. [13]

      Feng, X.; Taton, D.; Borsali, R.; Chaikof, E. L.; Gnanou, Y. pH Responsiveness of dendrimer-like poly(ethylene oxide)s. J. Am. Chem. Soc. 2006, 128, 11551-11562.  doi: 10.1021/ja0631605

    14. [14]

      Matmour, R.; Lepoittevin, B.; Joncheray, T. J.; El-khouri, R. J.; Taton, D.; Duran, R. S.; Gnanou, Y. Synthesis and investigation of surface properties of dendrimer-like copolymers based on polystyrene and poly(tert-butylacrylate). Macromolecules 2005, 38, 5459-5467.  doi: 10.1021/ma048097n

    15. [15]

      Feng, X.; Taton, D.; Chaikof, E. L.; Gnanou, Y. Fast access to dendrimer-like poly(ethylene oxide)s through anionic ring-opening polymerization of ethylene oxide and use of nonprotected glycidol as branching agent. Macromolecules 2009, 42, 7292-7298.  doi: 10.1021/ma901323f

    16. [16]

      Feng, X.; Taton, D.; Chaikof, E. L.; Gnanou, Y. Toward an easy access to dendrimer-like poly(ethylene oxide)s. J. Am. Chem. Soc. 2005, 127, 10956-10966.  doi: 10.1021/ja0509432

    17. [17]

      Kong, L. Z.; Pan, C. Y. Preparation of dendrimer-like copolymers based on polystyrene and poly(L-lactide) and formation of hollow microspheres. Polymer 2008, 49, 200-210.  doi: 10.1016/j.polymer.2007.11.042

    18. [18]

      Zhao, Y.; Shuai, X.; Chen, C.; Xi, F. Synthesis of star block copolymers from dendrimer initiators by combining ring-opening polymerization and atom transfer radical polymerization. Macromolecules 2004, 37, 8854-8862.  doi: 10.1021/ma048303r

    19. [19]

      Teertstra, S. J.; Gauthier, M. Dendrigraft polymers: macromolecular engineering on a mesoscopic scale. Prog. Polym. Sci. 2004, 29, 277-327.  doi: 10.1016/j.progpolymsci.2004.01.001

    20. [20]

      Trollsȧs, M.; Kelly, M. A.; Claesson, H.; Siemens, R.; Hedrick, J. L. Highly branched block copolymers: Design, synthesis, and morphology. Macromolecules 1999, 32, 4917-4924.  doi: 10.1021/ma990054x

    21. [21]

      Stancik, C. M.; Pople, J. A.; Trollsȧs, M.; Lindner, P.; Hedrick, J. L.; Gast, A. P. Impact of core architecture on solution properties of dendrimer-like star copolymers. Macromolecules 2003, 36, 5765-5775.  doi: 10.1021/ma021450+

    22. [22]

      Trollsȧs, M.; Hedrick, J. L. Dendrimer-like star polymers. J. Am. Chem. Soc. 1998, 120, 4644-4651.  doi: 10.1021/ja973678w

    23. [23]

      Hedrick, J. L.; Trollsȧs, M.; Hawker, C. J.; Atthoff, B.; Claesson, H.; Heise, A.; Miller, R. D. Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization. Macromolecules 1998, 31, 8691-8705.  doi: 10.1021/ma980932b

    24. [24]

      Percec, V.; Barboiu, B.; Grigoras, C.; Bera, T. K. Universal iterative strategy for the divergent synthesis of dendritic macromolecules from conventional monomers by a combination of living radical polymerization and irreversible TER minator multifunctional initiator (TERMINI). J. Am. Chem. Soc. 2003, 125, 6503-6516.  doi: 10.1021/ja034746j

    25. [25]

      Matmour, R.; Gnanou, Y. Combination of an anionic terminator multifunctional initiator and divergent carbanionic polymerization: Application to the synthesis of dendrimer-like polymers and of asymmetric and miktoarm stars. J. Am. Chem. Soc. 2008, 130, 1350-1361.  doi: 10.1021/ja076442t

    26. [26]

      Orfanou, K.; Iatrou, H.; Lohse, D. J.; Hadjichristidis, N. Synthesis of well-defined second (G-2) and third (G-3) generation dendritic polybutadienes. Macromolecules 2006, 39, 4361-4365.  doi: 10.1021/ma060231b

    27. [27]

      Bender, J. T.; Knauss, D. M. Dendritic Polystyrene with hydroxyl-functionalized branch points by convergent living anionic polymerization. Macromolecules 2009, 42, 2411-2418.  doi: 10.1021/ma802657c

    28. [28]

      Hutchings, L. R.; Roberts-Bleming, S. J. DendriMacs. Well-defined dendritically branched polymers synthesized by an iterative convergent strategy involving the coupling reaction of AB2 macromonomers. Macromolecules 2006, 39, 2144-2152.

    29. [29]

      Altintas, O.; Demirel, A. L.; Hizal, G.; Tunca, U. Dendrimer-like miktoarm star terpolymers: A3-(B-C)3 via click reaction strategy. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5916-5928.  doi: 10.1002/pola.v46:17

    30. [30]

      Urbani, C. N.; Bell, C. A.; Whittaker, M. R.; Monteiro, M. J. Convergent synthesis of second generation AB-type miktoarm dendrimers using " Click” chemistry catalyzed by copper wire. Macromolecules 2008, 41, 1057-1060.  doi: 10.1021/ma702707e

    31. [31]

      Bell, C. A.; Jia, Z.; Kulis, J.; Monteiro, M. J. Modulating two copper(I)-catalyzed orthogonal " Click” reactions for the one-pot synthesis of highly branched polymer architectures at 25 °C. Macromolecules 2011, 44, 4814-4827.  doi: 10.1021/ma200649b

    32. [32]

      Matsuo, A.; Watanabe, T.; Hirao, A. Synthesis of well-defined dendrimer-like branched polymers and block copolymer by the iterative approach involving coupling reaction of living anionic polymer and functionalization. Macromolecules 2004, 37, 6283-6290.  doi: 10.1021/ma0496549

    33. [33]

      Hirao, A.; Matsuo, A.; Watanabe, T. Precise synthesis of dendrimer-like star-branched poly(methyl methacrylate)s up to seventh generation by an iterative divergent approach involving coupling and transformation reactions. Macromolecules 2005, 38, 8701-8711.  doi: 10.1021/ma050762k

    34. [34]

      Hirao, A.; Watanabe, T. Precise synthesis and characterization of fourth-generation dendrimer-like star-branched poly(methyl methacrylate)s and block copolymers by iterative methodology based on living anionic polymerization. Macromolecules 2009, 42, 682-693.  doi: 10.1021/ma802209n

    35. [35]

      Yoo, H. S.; Watanabe, T.; Matsunaga, Y.; Hirao, A. Precise synthesis of dendrimer-like star-branched poly(tert-butyl methacrylate)s and their block copolymers by a methodology combining α-terminal-functionalized living anionic polymers with a specially designed linking reaction in an iterative fashion. Macromolecules 2012, 45, 100-112.  doi: 10.1021/ma202367e

    36. [36]

      Deffieux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. Synthesis and AFM structural imaging of dendrimer-like star-branched polystyrenes. J. Am. Chem. Soc. 2008, 130, 5670-5672.  doi: 10.1021/ja800881k

    37. [37]

      Zhang, H.; He, J.; Zhang, C.; Ju, Z.; Li, J.; Yang, Y. Continuous process for the synthesis of dendrimer-like star polymers by anionic polymerization. Macromolecules 2012, 45, 828-841.  doi: 10.1021/ma2024039

    38. [38]

      Zhang, H.; Zhu, J.; He, J.; Qiu, F.; Zhang, H.; Yang, Y.; Lee, H.; Chang, T. Easy Synthesis of dendrimer-like polymers through a divergent iterative " end-grafting” method. Polym. Chem. 2013, 4, 830-839.  doi: 10.1039/C2PY20742G

    39. [39]

      Wang, Y.; Qi, G.; He, J. Unimolecular micelles from layered amphiphilic dendrimer-like block copolymers. ACS Macro Lett. 2016, 5, 547-551.  doi: 10.1021/acsmacrolett.6b00198

    40. [40]

      Natalello, A.; Tonhauser, C.; Berger-Nicoletti, E.; Frey, H. A combined DPE/epoxide termination strategy for hydroxyl end-functional poly(2-vinylpyridine) and amphiphilic AB2-miktoarm stars. Macromolecules 2011, 44, 9887-9890.  doi: 10.1021/ma2023793

    41. [41]

      Zheng, K.; He, J. Thermally " switchable” nanoreactor from amphiphilic dendrimer-like copolymer with dense hydrophilic shell. Manuscript in preparation.

    42. [42]

      Ruckenstein, E.; Zhang, H. Well-defined graft copolymers based on the selective living anionic polymerization of the bifunctional monomer 4-(vinylphenyl)-1-butene. Macromolecules 1999, 32, 6082-6087.  doi: 10.1021/ma9908907

    43. [43]

      Wang, X.; He, J.; Yang, Y. Synthesis of ABCD-type miktoarm star copolymers and transformation into zwitterionic star copolymers. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4818-4828.  doi: 10.1002/pola.v45:21

    44. [44]

      Gauthier, M.; Li, J.; Dockendorff, J. Arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers as unimolecular micelles. Synthesis from acetylated substrates. Macromolecules 2003, 36, 2642-2648.

    45. [45]

      Kee, R. A.; Gauthier, M. Arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers: Synthesis and enhanced polyelectrolyte effect in solution. Macromolecules 2002, 35, 6526-6532.  doi: 10.1021/ma011124e

    46. [46]

      Kee, R. A.; Gauthier, M. Arborescent polystyrene-graft-poly(tert-butyl methacrylate) copolymers: Synthesis and enhanced polyelectrolyte effect in solution. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2335-2346.

    47. [47]

      Chu, B.; Liu, T. Characterization of nanoparticles by scattering techniques. J. Nanopart. Res. 2000, 2, 29-41.  doi: 10.1023/A:1010001822699

    48. [48]

      Li, L.; He, C.; He, W.; Wu, C. Formation kinetics and scaling of " defect-free” hyperbranched polystyrene chains with uniform subchains prepared from seesaw-type macromonomers. Macromolecules 2011, 44, 8195-8206.  doi: 10.1021/ma201687s

    49. [49]

      Trollsȧs, M.; Atthof, B.; Würsch, A.; Hedrick, J. L. Constitutional isomers of dendrimer-like star polymers: design, synthesis, and conformational and structural properties. Macromolecules 2000, 33, 6423-6438.  doi: 10.1021/ma000321v

  • 加载中
    1. [1]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    2. [2]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    3. [3]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    6. [6]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    7. [7]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    8. [8]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    9. [9]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    10. [10]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    11. [11]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    12. [12]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    13. [13]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    14. [14]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    15. [15]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    16. [16]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    17. [17]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    18. [18]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    19. [19]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    20. [20]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

Metrics
  • PDF Downloads(0)
  • Abstract views(806)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return