Citation: Guan-Hang Yu, Qing Han, Liang-Ti Qu. Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 535-547. doi: 10.1007/s10118-019-2245-9 shu

Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion

  • Corresponding author: Qing Han, qhan@bit.edu.cn Liang-Ti Qu, lqu@bit.edu.cn
  • Received Date: 18 January 2019
    Revised Date: 19 February 2019
    Available Online: 27 March 2019

  • Graphene fibers are a kind of novel carbon fibers assembled by orderly aligned graphene sheets with high flexibility, good conductivity, high thermal conductivity, and low density, which make them possible to be widely used in high-performance and multi-functional compound materials as well as flexible electronic devices. In this review, we summarize the research progress in the synthesis of graphene fibers, and their applications in sensor, energy storage, and energy conversion. Furthermore, the current issues and some prospects for the future trend of graphene fibers are discussed.
  • 加载中
    1. [1]

      Donnet, J. B. in Carbon fibers. Marcel Dekker, Inc, 1998.

    2. [2]

      He, F. in Carbon fiber and graphite fiber. Chemical Industry Press, 2010.

    3. [3]

      Jeffries, R. Prospects for carbon fibres. Nature 1971, 232(5309), 304-307.  doi: 10.1038/232304a0

    4. [4]

      Frank, E.; Steudle, L. M.; Ingildeev, D.; Spörl, J. M.; Buchmeiser, M. R. Carbon fibers: precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 2014, 53(21), 5262-5298.  doi: 10.1002/anie.v53.21

    5. [5]

      Standage, A. E.; Prescott, R. High elastic modulus carbon fibre. Nature 1966, 211(5045), 169-169.

    6. [6]

      Moreton, R.; Watt, W.; Johnson, W. Carbon fibres of high strength and high breaking strain. Nature 1967, 213(5077), 690-691.  doi: 10.1038/213690a0

    7. [7]

      Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354(6348), 56-58.  doi: 10.1038/354056a0

    8. [8]

      Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles. Nature 2003, 423(6941), 703-703.  doi: 10.1038/423703a

    9. [9]

      Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C.; Parra-Vasquez, A. N. G.; Kim, M. J.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W. E.; Pasquali, M.; Hwang, W. F.; Hauge, R. H.; Fischer, J. E.; Smalley, R. E. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305(5689), 1447-1450.  doi: 10.1126/science.1101398

    10. [10]

      Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290(5495), 1331-1334.  doi: 10.1126/science.290.5495.1331

    11. [11]

      Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J. E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 2009, 4(12), 830-834.  doi: 10.1038/nnano.2009.302

    12. [12]

      Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 2002, 419(6909), 801-801.  doi: 10.1038/419801a

    13. [13]

      Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304(5668), 276-278.  doi: 10.1126/science.1094982

    14. [14]

      Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306(5700), 1358-1361.  doi: 10.1126/science.1104276

    15. [15]

      Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays. Adv. Mater. 2006, 18(12), 1505-1510.  doi: 10.1002/(ISSN)1521-4095

    16. [16]

      Weng, W. Z.; He, S. S.; Song, H. Y.; Li, X. Q.; Cao, L. H.; Hu, Y. J.; Cui, J.; Zhou, Q. R.; Peng, H. S.; Su, J. C. Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior. ACS Nano 2018, 12(8), 7601−7612.  doi: 10.1021/acsnano.7b07439

    17. [17]

      He, S. S.; Zhang, Y. Y.; Qiu, L. B.; Zhang, L. S.; Xie, Y.; Pan, J.; Chen, P. N.; Wang, B. J.; Xu, X. J.; Hu, Y. J.; Dinh, C. T.; De Luna, P.; Banis, M. N.; Wang, Z. Q.; Sham, T. K.; Gong, X. G.; Zhang, B.; Peng, H. S.; Sargent, E. H. Chemical-to-electricity carbon: water device. Adv. Mater. 2018, 30(18), 1707635.  doi: 10.1002/adma.201707635

    18. [18]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669.  doi: 10.1126/science.1102896

    19. [19]

      Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8(3), 902-907.  doi: 10.1021/nl0731872

    20. [20]

      Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321(5887), 385-388.  doi: 10.1126/science.1157996

    21. [21]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438(7065), 197-200.  doi: 10.1038/nature04233

    22. [22]

      Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438(7065), 201-204.  doi: 10.1038/nature04235

    23. [23]

      Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146(9-10), 351-355.  doi: 10.1016/j.ssc.2008.02.024

    24. [24]

      Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100(1), 016602.  doi: 10.1103/PhysRevLett.100.016602

    25. [25]

      Chen, H. J.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3(4), 206-209.  doi: 10.1038/nnano.2008.58

    26. [26]

      Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80(6), 1339-1339.  doi: 10.1021/ja01539a017

    27. [27]

      Brodie, B. C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249-259.  doi: 10.1098/rstl.1859.0013

    28. [28]

      Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31(2), 1481-1487.  doi: 10.1002/(ISSN)1099-0682

    29. [29]

      Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8(6), 1679-1682.  doi: 10.1021/nl080604h

    30. [30]

      Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48(15), 4466-4474.  doi: 10.1016/j.carbon.2010.08.006

    31. [31]

      Moon, K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73-78.

    32. [32]

      Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2(3), 463-470.  doi: 10.1021/nn700375n

    33. [33]

      McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater. 2007, 19(18), 4396-4404.  doi: 10.1021/cm0630800

    34. [34]

      Zhu, Y. W.; Stoller, M. D.; Cai, W. W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. S. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 2010, 4(2), 1227-1233.  doi: 10.1021/nn901689k

    35. [35]

      Wang, Z. J.; Zhou, X. Z.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem, C 2009, 113(32), 14071-14075.  doi: 10.1021/jp906348x

    36. [36]

      Guo, H.; Wang, X.; Qian, Q.; Wang, F.; Xia, X. H. A green approach to the dynthesis of graphene nanosheets. ACS Nano 2009, 3(9), 2653-2659.  doi: 10.1021/nn900227d

    37. [37]

      Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2006, 6(3), 183-191.

    38. [38]

      Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28(30), 6449-6456.  doi: 10.1002/adma.201506426

    39. [39]

      Liu, Y. J.; Liang, H.; Xu, Z.; Xi, J. B.; Chen, G. F.; Gao, W. W.; Xue, M. Q.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11(4), 4301−4306.  doi: 10.1021/acsnano.7b01491

    40. [40]

      Lim, L.; Liu, Y. S.; Liu, W. W.; Tjandra, R.; Rasenthiram, L.; Chen, Z. W.; Yu, A. P. All-in-one graphene based composite fiber: toward wearable supercapacitor. ACS Appl. Mater. Interfaces 2017, 9(45), 39576-39583.  doi: 10.1021/acsami.7b10182

    41. [41]

      Meng, J.; Nie, W. Q.; Zhang, K.; Xu, F. J.; Ding, X.; Wang, S. R.; Qiu, Y. P. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 2018, 10(16), 13652−13659.  doi: 10.1021/acsami.8b04438

    42. [42]

      Choi, S. J.; Yu, H. Y.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 2018, 14(13), 1703934.  doi: 10.1002/smll.v14.13

    43. [43]

      Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.  doi: 10.1038/ncomms1583

    44. [44]

      Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6(8), 7103-7113.  doi: 10.1021/nn3021772

    45. [45]

      Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10(11), 817−822.  doi: 10.1038/nmat3115

    46. [46]

      Li, M. C.; Zhang, X. H.; Wang, X.; Ru, Y.; Qiao, J. L. Ultrastrong graphene-based fibers with increased elongation. Nano Lett. 2016, 16(10), 6511-6515.  doi: 10.1021/acs.nanolett.6b03108

    47. [47]

      Zhao, Y.; Jiang, C. C.; Hu, C. G.; Dong, Z. L.; Xue, J. L.; Meng, Y. N.; Zheng, N.; Chen, P. W.; Qu, L. T. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 2013, 7(3), 2406-2412.  doi: 10.1021/nn305674a

    48. [48]

      Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a onestep hydrothermal process. ACS Nano 2010, 4(7), 4324-4330.  doi: 10.1021/nn101187z

    49. [49]

      Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24(14), 1856-1861.  doi: 10.1002/adma.v24.14

    50. [50]

      Wu, G.; Tan, P. F.; Wu, X. J.; Peng, L.; Cheng, H. Y.; Wang, C. F.; Chen, W.; Yu, Z. Y.; Chen, S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv. Funct. Mater. 2017, 27(36), 1702493.  doi: 10.1002/adfm.v27.36

    51. [51]

      Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett. 2012, 12(11), 5879-5884.  doi: 10.1021/nl303243h

    52. [52]

      Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. A Bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv. Mater. 2018, 30(15), 1706435.  doi: 10.1002/adma.v30.15

    53. [53]

      Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27(19), 12164-12171.  doi: 10.1021/la202380g

    54. [54]

      Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395.  doi: 10.1038/srep00395

    55. [55]

      Chen, T.; Dai, L. M. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew. Chem. Int. Ed. 2015, 54(49), 14947-14950.  doi: 10.1002/anie.201507246

    56. [56]

      Hu, C. G.; Zhai, X. Q.; Liu, L. L.; Zhao, Y.; Jiang, L.; Qu, L. T. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci. Rep. 2013, 3, 2065.  doi: 10.1038/srep02065

    57. [57]

      Jang, E. Y.; Carretero-Gonzalez, J.; Choi, A.; Kim, W. J.; Kozlov, M. E.; Kim, T.; Kang, T. J.; Baek, S. J.; Kim, D. W.; Park, Y. W.; Baughman, R. H.; Kim, Y. H. Fibers of reduced graphene oxide nanoribbons. Nanotechnology 2012, 23(23), 235601.  doi: 10.1088/0957-4484/23/23/235601

    58. [58]

      Zhao, F.; Zhao, Y.; Cheng, H. H.; Qu, L. T. A Graphene fibriform responsor for sensing heat, humidity, and mechanical changes. Angew. Chem. Int. Ed. 2015, 54(49), 14951-14955.  doi: 10.1002/anie.201508300

    59. [59]

      Ding, X. T.; Bai, J.; Xu, T.; Li, C. X.; Zhang, H. M.; Qu, L. T. A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. Electrochem. Commun. 2016, 72, 122-125.  doi: 10.1016/j.elecom.2016.09.021

    60. [60]

      Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7(4), 1307−1338.  doi: 10.1039/C3EE43182G

    61. [61]

      Chen, B.; Liu, E. Z.; Cao, T. T.; He, F.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. Nano Energy 2017, 3, 247−256.

    62. [62]

      Lee, J. G.; Kwon, Y. B.; Ju, J. Y.; Choi, S. H.; Kang, Y. K.; Yu, W. R.; Kim, D. W. Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries. J. Appl. Electrochem. 2017, 47(8), 865−875.  doi: 10.1007/s10800-017-1085-y

    63. [63]

      Wang, B.; Ryu, J. G.; Choi, S. H.; Song, G. J.; Hong, D. K.; Hwang, C. Y.; Chen, X.; Wang, B.; Li, W.; Song, H. K.; Park, S. J.; Ruoff, R. S. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano, 2018, 12(2), 1736−1746.

    64. [64]

      Hoshide, T.; Zheng, Y. C.; Hou, J. Y.; Wang, Z. Q.; Li, Q. W.; Zhao, Z. G.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett. 2017, 17(6), 3543−3549.  doi: 10.1021/acs.nanolett.7b00623

    65. [65]

      Rao, J. Y.; Liu, N. S.; Zhang, Z.; Su, J.; Li, L. Y.; Xiong, L.; Gao, Y. H. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 2018, 51, 425−433.  doi: 10.1016/j.nanoen.2018.06.067

    66. [66]

      Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5(9), 651-654.  doi: 10.1038/nnano.2010.162

    67. [67]

      Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater, 2012, 22(21), 4501-4510.  doi: 10.1002/adfm.v22.21

    68. [68]

      Chen, J.; Li, C.; Shi, G. Q. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 2013, 4(8), 1244-1253.  doi: 10.1021/jz400160k

    69. [69]

      Huang, L.; Li, C.; Shi, G. Q. High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J. Mater. Chem. A 2014, 2(4), 968-974.  doi: 10.1039/C3TA14511E

    70. [70]

      Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitors. Nanoscale 2014, 6(12), 6448-6451.  doi: 10.1039/c4nr01220h

    71. [71]

      Zhao, Y.; Han, Q.; Cheng, Z. H.; Jiang, L.; Qu, L. T. Integratedgraphene systems by laser irradiation for advanced deviced. Nano Today 2017, 12, 14-30.  doi: 10.1016/j.nantod.2016.12.010

    72. [72]

      Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. T. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 2015, 3(6), 2547-2551.  doi: 10.1039/C4TA06574C

    73. [73]

      Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11(11), 11056−11065.  doi: 10.1021/acsnano.7b05092

    74. [74]

      Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 2013, 52(40), 10482-10486.  doi: 10.1002/anie.201304358

    75. [75]

      Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 2014, 26(18), 2909-2913.  doi: 10.1002/adma.v26.18

    76. [76]

      Conley, H.; Lavrik, N. V.; Prasai, D.; Bolotin, K. I. Graphene bimetallic-like cantilevers: probing graphene/substrate interactions. Nano Lett. 2011, 11(11), 4748-4752.  doi: 10.1021/nl202562u

    77. [77]

      Wang, Y. H.; Bian, K.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Zhang, H. M.; Qu, L. T. Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications. Electrochem. Commun. 2013, 35, 49-52.  doi: 10.1016/j.elecom.2013.07.044

    78. [78]

      Xie, X. J.; Qu, L. T.; Zhou, C.; Li, Y.; Bai, H.; Shi, G. Q.; Dai, L. M. An Asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 2010, 4(10), 6050-6054.  doi: 10.1021/nn101563x

    79. [79]

      Liang, J. J.; Huang, Y.; Oh, J. Y.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 2011, 21(19), 3778-3784.  doi: 10.1002/adfm.201101072

    80. [80]

      Liu, J.; Wang, Z.; Xie, X. J.; Cheng, H. H.; Zhao, Y.; Qu, L. T. A rationally-designed synergetic polypyrrole/graphene bilayer actuator. J. Mater. Chem. 2012, 22(9), 4015-4020.  doi: 10.1039/c2jm15266e

    81. [81]

      Huang, Y.; Liang, J. J.; Chen, Y. S. The application of graphene based materials for actuators. J. Mater. Chem. 2012, 22(9), 3671-3679.  doi: 10.1039/c2jm15536b

    82. [82]

      Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote lightcontrolled liquid microvalves. Adv. Funct. Mater. 2012, 22(19), 4017-4022.  doi: 10.1002/adfm.v22.19

    83. [83]

      Wu, C. Z.; Feng, J.; Peng, L. L.; Ni, Y.; Liang, H. Y.; He, L. H.; Xie, Y. Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: new prototype robotic motions under infrared-light stimuli. J. Mater. Chem. 2011, 21(46), 18584-18591.  doi: 10.1039/c1jm13311j

    84. [84]

      Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5(8), 3112-3126.  doi: 10.1039/c3nr00011g

    85. [85]

      Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Chen, W. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv. Mater. 2013, 25(9), 1270-1274.  doi: 10.1002/adma.v25.9

    86. [86]

      Liang, J. J.; Huang, L.; Li, N.; Huang, Y.; Wu, Y. P.; Fang, S. L.; Oh, J. Y.; Kozlov, M.; Ma, Y. F.; Li, F. F.; Baughman, R.; Chen, Y. S. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 2012, 6(5), 4508-4509.  doi: 10.1021/nn3006812

    87. [87]

      Cheng, H. H.; Huang, Y. X.; Shi, G. Q.; Jiang, L.; Qu, L. T. Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 2017, 50(7), 1663−1671.  doi: 10.1021/acs.accounts.7b00131

    88. [88]

      Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329-335.  doi: 10.1016/j.nanoen.2016.12.062

    89. [89]

      Yang, Z. B.; Sun, H.; Chen, T.; Qiu, L. B.; Luo, Y. F.; Peng, H. S. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. Int. Ed. 2013, 52(29), 7545-7548.

    90. [90]

      Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4(1), 1600262.  doi: 10.1002/advs.201600262

    91. [91]

      Xu, J.; Chen, Z. Y.; Zhang, H. W.; Lin, G. B.; Wang, X. X.; Long, J. L. Cd3(C3N3S3)2 coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H2O2 production under visible light. Sci. Bull. 2017, 62(9), 610-618.  doi: 10.1016/j.scib.2017.04.013

    92. [92]

      Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 2014, 53, 250-254.  doi: 10.1002/anie.v53.1

  • 加载中
    1. [1]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    4. [4]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    5. [5]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    6. [6]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    7. [7]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    8. [8]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    9. [9]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    10. [10]

      Limin Wang Feiyi Huang Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501

    11. [11]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    12. [12]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    13. [13]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    14. [14]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    15. [15]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    16. [16]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    17. [17]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    18. [18]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

Metrics
  • PDF Downloads(0)
  • Abstract views(940)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return