Citation: Chang-Geun Chae, Joonkeun Min, In-Gyu Bak, Jae-Suk Lee. Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 866-874. doi: 10.1007/s10118-019-2243-y shu

Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator

  • Corresponding author: Jae-Suk Lee, jslee@gist.ac.kr
  • †C. G. Chae and J. Min contributed equally to this work,Invited article for special issue of “Ionic Polymerization”
  • Received Date: 31 December 2018
    Revised Date: 10 January 2019
    Available Online: 26 March 2019

  • A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate) (P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of the diBCP (molecular weight, dispersity, composition, thermal stability, UV-visible absorption, and thin film morphology) were determined by various analytical methods. P3HT-b-PFIC was blended with C60 in a toluene solution to prepare a thin film of binary electron donor/acceptor system. Such blending enabled partial conjugation of the two components by the Diels-Alder reaction between furan and C60 at 60 °C for 3 h; the mixture was then spin-cast as a thin film, and annealed at 250 °C for 24 h. Tapping-mode atomic force microscopy (AFM) revealed that P3HT and C60 domains had nanoscale interfaces without a large phase segregation. This result indicated that the microphase separation of C60-functionalized P3HT-b-PFIC preserved even at high temperature provided free C60 molecules with channels to diffuse on the sides of P3HT domain, thus preventing the macroscopic crystallization of free C60 through the interfacial stabilization.
  • 加载中
    1. [1]

      Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474‒1476.  doi: 10.1126/science.258.5087.1474

    2. [2]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789‒1791.  doi: 10.1126/science.270.5243.1789

    3. [3]

      Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater.2001, 11, 15‒26.  doi: 10.1002/(ISSN)1616-3028

    4. [4]

      Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58‒77.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617‒1622.  doi: 10.1002/(ISSN)1616-3028

    6. [6]

      Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K. Yang, Y. High-efficiency solution processable polymer photovoltaic. Nat. Mater. 2005, 4, 864‒868.  doi: 10.1038/nmat1500

    7. [7]

      Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. T.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater. 2006, 5, 197‒203.  doi: 10.1038/nmat1574

    8. [8]

      He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636‒4643.  doi: 10.1002/adma.201103006

    9. [9]

      He, Z.; Zhong, C.; Su, S.; Xu, M. Wu, H.; Cao. Y. Enhanced power-conversion efficiency in polymer solar cells using inverted device structure. Nat. Photonics 2012, 6, 591‒595.  doi: 10.1038/nphoton.2012.190

    10. [10]

      Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Zhi.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc. 2013, 135, 8484‒8487.  doi: 10.1021/ja403318y

    11. [11]

      Lu, Z.; Li, C. H.; Du, C.; Gong, X.; Bo, Z. S. 6,7-dialkoxy-2,3-diphenylquinoxaline based conjugated polymers for solar cells with high open-circuit voltage. Chinese J. Polym. Sci. 2013, 31, 901‒911.  doi: 10.1007/s10118-013-1275-y

    12. [12]

      Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171‒183.  doi: 10.1007/s10118-017-1886-9

    13. [13]

      Hoppe, H.; Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 2006, 16, 45‒61.  doi: 10.1039/B510618B

    14. [14]

      Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006‒7043.  doi: 10.1021/cr400353v

    15. [15]

      Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 1996, 68, 3120‒3122.  doi: 10.1063/1.115797

    16. [16]

      Yang, X.; van Duren, J. K.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 2004, 37, 2151‒2158.  doi: 10.1021/ma035620+

    17. [17]

      Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K. Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297‒303.  doi: 10.1038/nphoton.2009.69

    18. [18]

      Ruderer, M. A.; Guo, S.; Meier, R.; Chiang, H. Y.; Körstgens, V.; Wiedersich, J.; Perlich, J.; Roth, S. V.; Müller-Buschbaum, P. Solvent‐induced morphology in polymer‐based systems for organic photovoltaics. Adv. Funct. Mater. 2011, 21, 3382‒3391.  doi: 10.1002/adfm.201100945

    19. [19]

      Sun, Y.; Liu, J. G.; Ding, Y.; Han, Y. C. Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chinese J. Polym. Sci. 2013, 31, 1029‒1037.  doi: 10.1007/s10118-013-1295-7

    20. [20]

      Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497‒500.  doi: 10.1038/nmat1928

    21. [21]

      Lee, J. K.; Ma, W. Li.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 2008, 130, 3619‒3623.  doi: 10.1021/ja710079w

    22. [22]

      Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44‒48.  doi: 10.1038/nmat3160

    23. [23]

      Chen, W. C.; Xiao, M. J.; Yang, C. P.; Duan, L. R.; Yang, R. Q. Efficient P3HT:PC61BM solar cells employing 1,2,4-trichlorobenzene as the processing additives. Chinese J. Polym. Sci. 2017, 35, 302‒308.  doi: 10.1007/s10118-017-1892-y

    24. [24]

      Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 2003, 13, 85‒88.  doi: 10.1002/adfm.200390011

    25. [25]

      Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stühn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 2005, 15, 1193‒1196.  doi: 10.1002/(ISSN)1616-3028

    26. [26]

      Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579‒583.  doi: 10.1021/nl048120i

    27. [27]

      Mihailetchi, V. D.; Xie, H.; de Boer, B.; Popescu, L. M.; Hulmmelen, J. C.; Blom, P. W. M.; Koster, L. J. A. Origin of the enhanced performance in poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl. Phys. Lett. 2006, 89, 012107.  doi: 10.1063/1.2212058

    28. [28]

      Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. " Solvent annealing” effect in polymer solar cells based on poly(3‐hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636‒1644.  doi: 10.1002/(ISSN)1616-3028

    29. [29]

      Yassar, A.; Miozzo, L.; Gironda, R.; Horowitz, G. Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 2013, 38, 791‒844.  doi: 10.1016/j.progpolymsci.2012.10.001

    30. [30]

      Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. J. Am. Chem. Soc. 2007, 129, 11036‒11038.  doi: 10.1021/ja0733991

    31. [31]

      Gholamkhass, B.; Holdcroft, S. Toward stabilization of domains in polymer bulk heterojunction films. Chem. Mater. 2010, 22, 5371‒5376.  doi: 10.1021/cm1018184

    32. [32]

      Dante, M.; Yang, C.; Walker, B.; Wudl, F.; Nguyen, T. Q. Self‐assembly and charge‐transport properties of a polythiophene-fullerene triblock copolymer. Adv. Mater. 2010, 22, 1835‒1839.  doi: 10.1002/adma.v22:16

    33. [33]

      Hiorns, R. C.; Cloutet, E.; Ibarboure, E.; Khoukh, A.; Bejbouji, H.; Vignau, L.; Cramail, H. Synthesis of donor-acceptor multiblock copolymers incorporating fullerene backbone repeat units. Macromolecules 2010, 43, 6033‒6044.  doi: 10.1021/ma100694y

    34. [34]

      Sivula, K.; Ball, Z. T.; Watanabe, N.; Fréchet, J. M. J. Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv. Mater. 2006, 18, 206‒210.  doi: 10.1002/(ISSN)1521-4095

    35. [35]

      Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. Well-defined donor-acceptor rod-coil diblock copolymers based on P3HT containing C60: The morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 2009, 19, 5416‒5423.  doi: 10.1039/b901732a

    36. [36]

      Heuken, M.; Komber, H.; Erdmann, T.; Senkovskyy, V.; Kiriy, A.; Voit, B. Fullerene-functionalized donor-acceptor block copolymers through etherification as stabilizers for bulk heterojunction solar cells. Macromolecules 2012, 45, 4101‒4114.  doi: 10.1021/ma300473w

    37. [37]

      Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Lévêque, P.; Audinot, J.-N.; Berson, S.; Heiser, T.; Hadzniioannou, G.; Mezzenga, R. A New supramolecular route for using rod‐coil block copolymers in photovoltaic applications. Adv. Mater. 2010, 22, 763‒768.  doi: 10.1002/adma.v22:6

    38. [38]

      Renaud, C.; Mougnier, S.-J.; Pavlopoulou, E.; Brochon, C.; Fleury, G.; Deribew, D.; Portale, G.; Cloutet, E.; Chambon, S.; Vignau, L.; Hadziioannou, G. Block copolymer as a nanostructuring agent for high‐efficiency and annealing‐free bulk heterojunction organic solar cells. Adv. Mater. 2012, 24, 2196‒2201.  doi: 10.1002/adma.201104461

    39. [39]

      Gernigon, V.; Lévêque, P.; Richard, F.; Leclerc, N.; Brochon, C.; Braun, C. H.; Ludwigs, S.; Anokhin, D. V.; Ivanov, D. A.; Hadziioannou, G.; Heiser, T. Microstructure and optoelectronic properties of P3HT-b-P4VP/PCBM blends: Impact of PCBM on the copolymer self-assembly. Macromolecules 2013, 46, 8824‒8831.  doi: 10.1021/ma4010692

    40. [40]

      Laiho, A.; Ras, R. H. A.; Valkama, S.; Ruokolainen, J.; Österbacka, R.; Ikkala, O. Control of self-assembly by charge-transfer complexation between C60 fullerene and electron donating units of block copolymers. Macromolecules 2006, 39, 7648‒7653.  doi: 10.1021/ma061165g

    41. [41]

      Chan S. H.; Lai, C. S.; Chen, H. L.; Ting, C.; Chen, C. P. Highly efficient P3HT:C60 solar cell free of annealing process. Macromolecules 2011, 44, 8886‒8891.  doi: 10.1021/ma201425d

    42. [42]

      Yang, X.; Lu, G.; Li, L.; Zhou, E. Nanoscale phase‐aggregation‐induced performance improvement of polymer solar cells. Small 2007, 3, 611‒615.  doi: 10.1002/(ISSN)1613-6829

    43. [43]

      Guhr, K. I.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a polymer support. J. Am. Chem. Soc. 1994, 116, 5997‒5998.  doi: 10.1021/ja00092a072

    44. [44]

      Nie, B.; Hansan, K.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a furan-functionalized resin. Tetrahedron Lett. 1995, 36, 3617‒3618.  doi: 10.1016/0040-4039(95)00578-Z

    45. [45]

      Gheneim, R.; Perez-Berumen, C.; Gandini, A. Diels-Alder reactions with novel polymeric dienes and dienophiles:  Synthesis of reversibly cross-linked elastomers. Macromolecules 2002, 35, 7246‒7253.  doi: 10.1021/ma020343c

    46. [46]

      Zuen, H.; Gandini, A. Crystalline furanic polyisocyanates. Polym. Bull. 1991, 26, 383‒390.  doi: 10.1007/BF00302604

    47. [47]

      Wu, Z. Q.; Ono, R. J.; Chen, Z.; Li, Z.; Bielawski, C. W. Polythiophene-block-poly(γ-benzyl L-glutamate): Synthesis and study of a new rod–rod block copolymer. Polym. Chem. 2011, 2, 300‒302.  doi: 10.1039/C0PY00299B

    48. [48]

      Bhatt, M. P.; Du, J.; Rainbolt, E. A.; Pathiranage, T. M. S. K.; Huang, P.; Reuther, J. F.; Novak, B. M.; Biewer, M. C.; Stefan, M. C. A semiconducting liquid crystalline block copolymer containing regioregular poly(3-hexylthiophene) and nematic poly(n-hexyl isocyanate) and its application in bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 16148‒16156.  doi: 10.1039/C4TA02852J

    49. [49]

      Zhou, L.; Jiang, Z. Q.; Xu, L.; Liu, N.; Wu, Z. Q. Polythiophene-block-poly(phenyl isocyanide) copolymers: One-pot synthesis, properties and applications. Chinese J. Polym. Sci. 2017, 35, 1447‒1456.  doi: 10.1007/s10118-017-2003-9

    50. [50]

      Bur, A. J.; Fetters, L. J. The chain structure, polymerization, and conformation of polyisocyanates. Chem. Rev. 1976, 76, 727-746.  doi: 10.1021/cr60304a003

    51. [51]

      Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: Synthesis, structures, and functions. Chem. Rev. 2009, 109, 6102−6211.  doi: 10.1021/cr900162q

    52. [52]

      Mayer, S.; Zentel, R. Chiral polyisocyanates, a special class of helical polymers. Prog. Polym. Sci. 2001, 26, 1973‒2013.  doi: 10.1016/S0079-6700(01)00031-4

    53. [53]

      Chae, C. G.; Seo, H. B.; Lee, J. S., Living anionic polymerization of isocyanates. In Anionic polymerization: Principles, practice, strength, consequences and applications, Hadjichristidis, N.; Hirao, A., Eds., Springer, Japan, 2015, pp. 339‒386.

    54. [54]

      Shin, Y. D.; Kim, S. Y.; Ahn, J. H.; Lee, J. S. Synthesis of poly(n-hexyl isocyanate) by controlled anionic polymerization in the presence of NaBPh4. Macromolecules 2001, 34, 2408‒2410.  doi: 10.1021/ma0019813

    55. [55]

      Min, J.; Shah, P. N.; Ahn, J. H.; Lee, J. S. Effects of different reactive oxyanionic initiators on the anionic polymerizaition of n-hexyl isocyanate. Macromolecules 2011, 44, 3211‒3216.  doi: 10.1021/ma200414f

    56. [56]

      Shah, P. N.; Min, J.; Chae, C. G.; Nishikawa, N.; Suemasa, D.; Kakuchi, T.; Satoh, T.; Lee, J. S. " Helicity inversion”: Linkage effects of chiral poly(n-hexyl isocyanate)s. Macromolecules 2012, 45, 8961‒8967.  doi: 10.1021/ma301930s

    57. [57]

      Min, J.; Shah, P. N.; Chae, C. G.; Lee, J. S. Arrangement of C60 via the self‐assembly of post‐functionalizable polyisocyanate block copolymer. Macromol. Rapid Commun. 2012, 33, 2029−2034.  doi: 10.1002/marc.v33.23

    58. [58]

      Min, J.; Yoo, H. S.; Shah, P. N.; Chae, C. G.; Lee, J. S. Enolate anionic initiator, sodium deoxybenzoin, for leading living natures by formation of aggregators at the growth chain ends. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1742‒1748.  doi: 10.1002/pola.26550

    59. [59]

      Chae, C. G.; Shah, P. N.; Min, J.; Seo, H. B.; Lee, J. S. Synthesis of novel amphiphilic polyisocyanate block copolymer with hydroxyl side group. Macromolecules 2014, 47, 1563−1569.  doi: 10.1021/ma500156j

    60. [60]

      Shah, P. N.; Chae, C. G.; Min, J.; Shimada, R.; Satoh, T.; Kakuchi, T.; Lee, J. S. A model chiral graft copolymer demonstrates evidence of the transmission of stereochemical information from the side chain to the main chain on a nanometer scale. Macromolecules 2014, 47, 2796‒2802.  doi: 10.1021/ma500544b

    61. [61]

      Jang Y. H.; Lansac, Y.; Kim, J. K.; Yoo, H. S.; Chae, C. G.; Choi, C. H.; Samal, S.; Lee, J. S. Dual function of a living polymerization initiator through the formation of a chain-end-protecting cluster: Density functional theory calculation. Phys. Chem. Chem. Phys. 2014, 16, 24929‒24935.  doi: 10.1039/C4CP03596H

    62. [62]

      Chae, C. G.; Shah, P. N.; Min, J.; Yu, Y. G.; Lee, J. S. Anionic polymerization of reactive 3‐chloropropyl isocyanate. Macromol. Symp. 2015, 349, 85−93.  doi: 10.1002/masy.v349.1

    63. [63]

      Chae, C. G.; Seo, H. B.; Bak, I. G.; Lee, J. S. Synthesis of amphiphilic helix-coil-helix poly(3-(glycerylthio)propyl isocyanate)-block-polystyrene-block-poly(3-(glycerylthio)propyl isocyanate). Macromolecules 2018, 51, 697−704.  doi: 10.1021/acs.macromol.7b02619

    64. [64]

      Chae, C. G.; Bak, I. G.; Lee, J. S. Fundamental kinetics of living anionic polymerization of isocyanates emerging by the sodium diphenylmethane-mediated initiation. Macromolecules 2018, 51, 6771‒6781.  doi: 10.1021/acs.macromol.8b01458

    65. [65]

      Chae, C. G.; Bak, I. G.; Lee, J. S. Propagation-inspired initiation of an aliphatic sodium amidate for the living anionic homo- and copolymerization of isocyanates: Access to the multiblocky sequence distribution of binary comonomers. Macromolecules 2018, 51, 10083‒10094.  doi: 10.1021/acs.macromol.8b02052

    66. [66]

      Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules 2004, 37, 3526‒3528.  doi: 10.1021/ma0357063

    67. [67]

      Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc. 2005, 127, 17542‒17547.  doi: 10.1021/ja0556880

    68. [68]

      Yuan, K.; Li, F.; Chen, Y.; Wang, X.; Chen, L. In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics. J. Mater. Chem. 2011, 21, 11886‒11894.

    69. [69]

      Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. In‐situ end‐group functionalization of regioregular poly(3‐alkylthiophene) using the grignard metathesis polymerization method. Adv. Mater. 2004, 16, 1017‒1019.  doi: 10.1002/(ISSN)1521-4095

    70. [70]

      Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 2005, 38, 10346‒10352.  doi: 10.1021/ma051096q

    71. [71]

      Higashihara, T.; Ueda, M. Synthesis and characterization of a novel coil-rod-coil triblock copolymers comprised of regioregular poly(3-hexylthiophene) and poly(methyl methacrylate) segments. React. Funct. Polym. 2009, 69, 457‒462.  doi: 10.1016/j.reactfunctpolym.2008.12.004

    72. [72]

      Higashihara, T.; Liu, C. L.; Chen, W. C.; Ueda, M. Synthesis of novel π-conjugated rod-rod-rod triblock copolymers containing poly(3-hexylthiophene) and polyacetylene segments by combination of quasi-living grim and living anionic polymerization. Polymers 2011, 3, 236‒251.  doi: 10.3390/polym3010236

    73. [73]

      Iwakura, Y.; Uno, K.; Kobayashi, N. Polymerization of isocyanates. V. Thermal degradation of polyisocyanates. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 2611‒2620.  doi: 10.1002/pol.1968.150060916

    74. [74]

      Durairaj, B.; Dimock, A. W.; Samulski, E. T.; Shaw, M. T. Investigation of the thermal degradation of alkyl isocyanate polymers by direct pyrolysis mass spectrometry. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 3211‒3225.  doi: 10.1002/pola.1989.080271003

  • 加载中
    1. [1]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    5. [5]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    9. [9]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    10. [10]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    11. [11]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    12. [12]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    13. [13]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    14. [14]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    15. [15]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    16. [16]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    17. [17]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    18. [18]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    19. [19]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    20. [20]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

Metrics
  • PDF Downloads(0)
  • Abstract views(731)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return