-
[1]
Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474‒1476.
doi: 10.1126/science.258.5087.1474
-
[2]
Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789‒1791.
doi: 10.1126/science.270.5243.1789
-
[3]
Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater.2001, 11, 15‒26.
doi: 10.1002/(ISSN)1616-3028
-
[4]
Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58‒77.
doi: 10.1002/(ISSN)1521-3773
-
[5]
Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617‒1622.
doi: 10.1002/(ISSN)1616-3028
-
[6]
Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K. Yang, Y. High-efficiency solution processable polymer photovoltaic. Nat. Mater. 2005, 4, 864‒868.
doi: 10.1038/nmat1500
-
[7]
Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. T.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater. 2006, 5, 197‒203.
doi: 10.1038/nmat1574
-
[8]
He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636‒4643.
doi: 10.1002/adma.201103006
-
[9]
He, Z.; Zhong, C.; Su, S.; Xu, M. Wu, H.; Cao. Y. Enhanced power-conversion efficiency in polymer solar cells using inverted device structure. Nat. Photonics 2012, 6, 591‒595.
doi: 10.1038/nphoton.2012.190
-
[10]
Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Zhi.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc. 2013, 135, 8484‒8487.
doi: 10.1021/ja403318y
-
[11]
Lu, Z.; Li, C. H.; Du, C.; Gong, X.; Bo, Z. S. 6,7-dialkoxy-2,3-diphenylquinoxaline based conjugated polymers for solar cells with high open-circuit voltage. Chinese J. Polym. Sci. 2013, 31, 901‒911.
doi: 10.1007/s10118-013-1275-y
-
[12]
Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171‒183.
doi: 10.1007/s10118-017-1886-9
-
[13]
Hoppe, H.; Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 2006, 16, 45‒61.
doi: 10.1039/B510618B
-
[14]
Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006‒7043.
doi: 10.1021/cr400353v
-
[15]
Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 1996, 68, 3120‒3122.
doi: 10.1063/1.115797
-
[16]
Yang, X.; van Duren, J. K.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 2004, 37, 2151‒2158.
doi: 10.1021/ma035620+
-
[17]
Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K. Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297‒303.
doi: 10.1038/nphoton.2009.69
-
[18]
Ruderer, M. A.; Guo, S.; Meier, R.; Chiang, H. Y.; Körstgens, V.; Wiedersich, J.; Perlich, J.; Roth, S. V.; Müller-Buschbaum, P. Solvent‐induced morphology in polymer‐based systems for organic photovoltaics. Adv. Funct. Mater. 2011, 21, 3382‒3391.
doi: 10.1002/adfm.201100945
-
[19]
Sun, Y.; Liu, J. G.; Ding, Y.; Han, Y. C. Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chinese J. Polym. Sci. 2013, 31, 1029‒1037.
doi: 10.1007/s10118-013-1295-7
-
[20]
Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497‒500.
doi: 10.1038/nmat1928
-
[21]
Lee, J. K.; Ma, W. Li.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 2008, 130, 3619‒3623.
doi: 10.1021/ja710079w
-
[22]
Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44‒48.
doi: 10.1038/nmat3160
-
[23]
Chen, W. C.; Xiao, M. J.; Yang, C. P.; Duan, L. R.; Yang, R. Q. Efficient P3HT:PC61BM solar cells employing 1,2,4-trichlorobenzene as the processing additives. Chinese J. Polym. Sci. 2017, 35, 302‒308.
doi: 10.1007/s10118-017-1892-y
-
[24]
Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 2003, 13, 85‒88.
doi: 10.1002/adfm.200390011
-
[25]
Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stühn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 2005, 15, 1193‒1196.
doi: 10.1002/(ISSN)1616-3028
-
[26]
Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579‒583.
doi: 10.1021/nl048120i
-
[27]
Mihailetchi, V. D.; Xie, H.; de Boer, B.; Popescu, L. M.; Hulmmelen, J. C.; Blom, P. W. M.; Koster, L. J. A. Origin of the enhanced performance in poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl. Phys. Lett. 2006, 89, 012107.
doi: 10.1063/1.2212058
-
[28]
Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. " Solvent annealing” effect in polymer solar cells based on poly(3‐hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636‒1644.
doi: 10.1002/(ISSN)1616-3028
-
[29]
Yassar, A.; Miozzo, L.; Gironda, R.; Horowitz, G. Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 2013, 38, 791‒844.
doi: 10.1016/j.progpolymsci.2012.10.001
-
[30]
Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. J. Am. Chem. Soc. 2007, 129, 11036‒11038.
doi: 10.1021/ja0733991
-
[31]
Gholamkhass, B.; Holdcroft, S. Toward stabilization of domains in polymer bulk heterojunction films. Chem. Mater. 2010, 22, 5371‒5376.
doi: 10.1021/cm1018184
-
[32]
Dante, M.; Yang, C.; Walker, B.; Wudl, F.; Nguyen, T. Q. Self‐assembly and charge‐transport properties of a polythiophene-fullerene triblock copolymer. Adv. Mater. 2010, 22, 1835‒1839.
doi: 10.1002/adma.v22:16
-
[33]
Hiorns, R. C.; Cloutet, E.; Ibarboure, E.; Khoukh, A.; Bejbouji, H.; Vignau, L.; Cramail, H. Synthesis of donor-acceptor multiblock copolymers incorporating fullerene backbone repeat units. Macromolecules 2010, 43, 6033‒6044.
doi: 10.1021/ma100694y
-
[34]
Sivula, K.; Ball, Z. T.; Watanabe, N.; Fréchet, J. M. J. Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv. Mater. 2006, 18, 206‒210.
doi: 10.1002/(ISSN)1521-4095
-
[35]
Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. Well-defined donor-acceptor rod-coil diblock copolymers based on P3HT containing C60: The morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 2009, 19, 5416‒5423.
doi: 10.1039/b901732a
-
[36]
Heuken, M.; Komber, H.; Erdmann, T.; Senkovskyy, V.; Kiriy, A.; Voit, B. Fullerene-functionalized donor-acceptor block copolymers through etherification as stabilizers for bulk heterojunction solar cells. Macromolecules 2012, 45, 4101‒4114.
doi: 10.1021/ma300473w
-
[37]
Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Lévêque, P.; Audinot, J.-N.; Berson, S.; Heiser, T.; Hadzniioannou, G.; Mezzenga, R. A New supramolecular route for using rod‐coil block copolymers in photovoltaic applications. Adv. Mater. 2010, 22, 763‒768.
doi: 10.1002/adma.v22:6
-
[38]
Renaud, C.; Mougnier, S.-J.; Pavlopoulou, E.; Brochon, C.; Fleury, G.; Deribew, D.; Portale, G.; Cloutet, E.; Chambon, S.; Vignau, L.; Hadziioannou, G. Block copolymer as a nanostructuring agent for high‐efficiency and annealing‐free bulk heterojunction organic solar cells. Adv. Mater. 2012, 24, 2196‒2201.
doi: 10.1002/adma.201104461
-
[39]
Gernigon, V.; Lévêque, P.; Richard, F.; Leclerc, N.; Brochon, C.; Braun, C. H.; Ludwigs, S.; Anokhin, D. V.; Ivanov, D. A.; Hadziioannou, G.; Heiser, T. Microstructure and optoelectronic properties of P3HT-b-P4VP/PCBM blends: Impact of PCBM on the copolymer self-assembly. Macromolecules 2013, 46, 8824‒8831.
doi: 10.1021/ma4010692
-
[40]
Laiho, A.; Ras, R. H. A.; Valkama, S.; Ruokolainen, J.; Österbacka, R.; Ikkala, O. Control of self-assembly by charge-transfer complexation between C60 fullerene and electron donating units of block copolymers. Macromolecules 2006, 39, 7648‒7653.
doi: 10.1021/ma061165g
-
[41]
Chan S. H.; Lai, C. S.; Chen, H. L.; Ting, C.; Chen, C. P. Highly efficient P3HT:C60 solar cell free of annealing process. Macromolecules 2011, 44, 8886‒8891.
doi: 10.1021/ma201425d
-
[42]
Yang, X.; Lu, G.; Li, L.; Zhou, E. Nanoscale phase‐aggregation‐induced performance improvement of polymer solar cells. Small 2007, 3, 611‒615.
doi: 10.1002/(ISSN)1613-6829
-
[43]
Guhr, K. I.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a polymer support. J. Am. Chem. Soc. 1994, 116, 5997‒5998.
doi: 10.1021/ja00092a072
-
[44]
Nie, B.; Hansan, K.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a furan-functionalized resin. Tetrahedron Lett. 1995, 36, 3617‒3618.
doi: 10.1016/0040-4039(95)00578-Z
-
[45]
Gheneim, R.; Perez-Berumen, C.; Gandini, A. Diels-Alder reactions with novel polymeric dienes and dienophiles: Synthesis of reversibly cross-linked elastomers. Macromolecules 2002, 35, 7246‒7253.
doi: 10.1021/ma020343c
-
[46]
Zuen, H.; Gandini, A. Crystalline furanic polyisocyanates. Polym. Bull. 1991, 26, 383‒390.
doi: 10.1007/BF00302604
-
[47]
Wu, Z. Q.; Ono, R. J.; Chen, Z.; Li, Z.; Bielawski, C. W. Polythiophene-block-poly(γ-benzyl L-glutamate): Synthesis and study of a new rod–rod block copolymer. Polym. Chem. 2011, 2, 300‒302.
doi: 10.1039/C0PY00299B
-
[48]
Bhatt, M. P.; Du, J.; Rainbolt, E. A.; Pathiranage, T. M. S. K.; Huang, P.; Reuther, J. F.; Novak, B. M.; Biewer, M. C.; Stefan, M. C. A semiconducting liquid crystalline block copolymer containing regioregular poly(3-hexylthiophene) and nematic poly(n-hexyl isocyanate) and its application in bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 16148‒16156.
doi: 10.1039/C4TA02852J
-
[49]
Zhou, L.; Jiang, Z. Q.; Xu, L.; Liu, N.; Wu, Z. Q. Polythiophene-block-poly(phenyl isocyanide) copolymers: One-pot synthesis, properties and applications. Chinese J. Polym. Sci. 2017, 35, 1447‒1456.
doi: 10.1007/s10118-017-2003-9
-
[50]
Bur, A. J.; Fetters, L. J. The chain structure, polymerization, and conformation of polyisocyanates. Chem. Rev. 1976, 76, 727-746.
doi: 10.1021/cr60304a003
-
[51]
Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: Synthesis, structures, and functions. Chem. Rev. 2009, 109, 6102−6211.
doi: 10.1021/cr900162q
-
[52]
Mayer, S.; Zentel, R. Chiral polyisocyanates, a special class of helical polymers. Prog. Polym. Sci. 2001, 26, 1973‒2013.
doi: 10.1016/S0079-6700(01)00031-4
-
[53]
Chae, C. G.; Seo, H. B.; Lee, J. S., Living anionic polymerization of isocyanates. In Anionic polymerization: Principles, practice, strength, consequences and applications, Hadjichristidis, N.; Hirao, A., Eds., Springer, Japan, 2015, pp. 339‒386.
-
[54]
Shin, Y. D.; Kim, S. Y.; Ahn, J. H.; Lee, J. S. Synthesis of poly(n-hexyl isocyanate) by controlled anionic polymerization in the presence of NaBPh4. Macromolecules 2001, 34, 2408‒2410.
doi: 10.1021/ma0019813
-
[55]
Min, J.; Shah, P. N.; Ahn, J. H.; Lee, J. S. Effects of different reactive oxyanionic initiators on the anionic polymerizaition of n-hexyl isocyanate. Macromolecules 2011, 44, 3211‒3216.
doi: 10.1021/ma200414f
-
[56]
Shah, P. N.; Min, J.; Chae, C. G.; Nishikawa, N.; Suemasa, D.; Kakuchi, T.; Satoh, T.; Lee, J. S. " Helicity inversion”: Linkage effects of chiral poly(n-hexyl isocyanate)s. Macromolecules 2012, 45, 8961‒8967.
doi: 10.1021/ma301930s
-
[57]
Min, J.; Shah, P. N.; Chae, C. G.; Lee, J. S. Arrangement of C60 via the self‐assembly of post‐functionalizable polyisocyanate block copolymer. Macromol. Rapid Commun. 2012, 33, 2029−2034.
doi: 10.1002/marc.v33.23
-
[58]
Min, J.; Yoo, H. S.; Shah, P. N.; Chae, C. G.; Lee, J. S. Enolate anionic initiator, sodium deoxybenzoin, for leading living natures by formation of aggregators at the growth chain ends. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1742‒1748.
doi: 10.1002/pola.26550
-
[59]
Chae, C. G.; Shah, P. N.; Min, J.; Seo, H. B.; Lee, J. S. Synthesis of novel amphiphilic polyisocyanate block copolymer with hydroxyl side group. Macromolecules 2014, 47, 1563−1569.
doi: 10.1021/ma500156j
-
[60]
Shah, P. N.; Chae, C. G.; Min, J.; Shimada, R.; Satoh, T.; Kakuchi, T.; Lee, J. S. A model chiral graft copolymer demonstrates evidence of the transmission of stereochemical information from the side chain to the main chain on a nanometer scale. Macromolecules 2014, 47, 2796‒2802.
doi: 10.1021/ma500544b
-
[61]
Jang Y. H.; Lansac, Y.; Kim, J. K.; Yoo, H. S.; Chae, C. G.; Choi, C. H.; Samal, S.; Lee, J. S. Dual function of a living polymerization initiator through the formation of a chain-end-protecting cluster: Density functional theory calculation. Phys. Chem. Chem. Phys. 2014, 16, 24929‒24935.
doi: 10.1039/C4CP03596H
-
[62]
Chae, C. G.; Shah, P. N.; Min, J.; Yu, Y. G.; Lee, J. S. Anionic polymerization of reactive 3‐chloropropyl isocyanate. Macromol. Symp. 2015, 349, 85−93.
doi: 10.1002/masy.v349.1
-
[63]
Chae, C. G.; Seo, H. B.; Bak, I. G.; Lee, J. S. Synthesis of amphiphilic helix-coil-helix poly(3-(glycerylthio)propyl isocyanate)-block-polystyrene-block-poly(3-(glycerylthio)propyl isocyanate). Macromolecules 2018, 51, 697−704.
doi: 10.1021/acs.macromol.7b02619
-
[64]
Chae, C. G.; Bak, I. G.; Lee, J. S. Fundamental kinetics of living anionic polymerization of isocyanates emerging by the sodium diphenylmethane-mediated initiation. Macromolecules 2018, 51, 6771‒6781.
doi: 10.1021/acs.macromol.8b01458
-
[65]
Chae, C. G.; Bak, I. G.; Lee, J. S. Propagation-inspired initiation of an aliphatic sodium amidate for the living anionic homo- and copolymerization of isocyanates: Access to the multiblocky sequence distribution of binary comonomers. Macromolecules 2018, 51, 10083‒10094.
doi: 10.1021/acs.macromol.8b02052
-
[66]
Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules 2004, 37, 3526‒3528.
doi: 10.1021/ma0357063
-
[67]
Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc. 2005, 127, 17542‒17547.
doi: 10.1021/ja0556880
-
[68]
Yuan, K.; Li, F.; Chen, Y.; Wang, X.; Chen, L. In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics. J. Mater. Chem. 2011, 21, 11886‒11894.
-
[69]
Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. In‐situ end‐group functionalization of regioregular poly(3‐alkylthiophene) using the grignard metathesis polymerization method. Adv. Mater. 2004, 16, 1017‒1019.
doi: 10.1002/(ISSN)1521-4095
-
[70]
Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 2005, 38, 10346‒10352.
doi: 10.1021/ma051096q
-
[71]
Higashihara, T.; Ueda, M. Synthesis and characterization of a novel coil-rod-coil triblock copolymers comprised of regioregular poly(3-hexylthiophene) and poly(methyl methacrylate) segments. React. Funct. Polym. 2009, 69, 457‒462.
doi: 10.1016/j.reactfunctpolym.2008.12.004
-
[72]
Higashihara, T.; Liu, C. L.; Chen, W. C.; Ueda, M. Synthesis of novel π-conjugated rod-rod-rod triblock copolymers containing poly(3-hexylthiophene) and polyacetylene segments by combination of quasi-living grim and living anionic polymerization. Polymers 2011, 3, 236‒251.
doi: 10.3390/polym3010236
-
[73]
Iwakura, Y.; Uno, K.; Kobayashi, N. Polymerization of isocyanates. V. Thermal degradation of polyisocyanates. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 2611‒2620.
doi: 10.1002/pol.1968.150060916
-
[74]
Durairaj, B.; Dimock, A. W.; Samulski, E. T.; Shaw, M. T. Investigation of the thermal degradation of alkyl isocyanate polymers by direct pyrolysis mass spectrometry. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 3211‒3225.
doi: 10.1002/pola.1989.080271003