Citation: Huan Qiu, Zhe-Ning Yang, Jun Ling. Facile Synthesis of Functional Poly(ε-caprolactone) via Janus Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 858-865. doi: 10.1007/s10118-019-2242-z shu

Facile Synthesis of Functional Poly(ε-caprolactone) via Janus Polymerization

  • Corresponding author: Jun Ling, lingjun@zju.edu.cn
  • †These authors contribute equally.,Invited article for special issue of “Ionic Polymerization”
  • Received Date: 29 December 2018
    Revised Date: 17 February 2019
    Available Online: 26 March 2019

  • Functionalized aliphatic polyesters attract increasing attentions as biocompatible and biodegradable polymers with broad applications in biological science. In this contribution, we propose a facile and controllable synthetic technique for functional poly(ε-caprolactone) (PCL) via Janus polymerization, which comprises cationic ring-opening copolymerization (ROP) of ε-caprolactone (CL) with 3,3-bis(chloromethyl)oxacyclobutane (CO) and (coordinated) anionic ROP of CL at a single propagating chain by rare earth metal triflates (RE(OTf)3) and propylene oxide, thus generating block copolymers in one step. The compositions of the copolymers of poly(CL-b-(CL-r-CO)) can be modulated by various RE(OTf)3. Scandium triflate catalyzes Janus polymerization to yield the copolymers containing the highest CO contents among all the RE(OTf)3 catalysts used with complete conversion of CL. The chlorine in CO repeating units is ready to be transferred into azide group which affords the modification sites to react with 9-ethynyl-9-fluorenol and mPEG-alkyne, respectively, via copper(I)-catalyzed azide-alkyne cycloaddition reaction with quantitative conversions of azides, as confirmed by FTIR analyses. According to NMR and SEC analyses, copolymers (PCC-g-PEG) bearing a homo-PCL block and a PEG-grafted block of poly(CO-co-CL) demonstrate well-defined chemical structures. The investigations on thermal properties reveal the strong phase separation between PCL and PEG blocks. The amphiphilic PCC-g-PEG is able to self-assemble into micelles in aqueous solution while cylindrical and lamellar morphologies are observed in bulk. We provide an efficient protocol to synthesize functional PCL combining one-step Janus polymerization and precise post-polymerization click reaction.
  • 加载中
    1. [1]

      Bednarek, M. Branched aliphatic polyesters by ring-opening (co)polymerization. Prog. Polym. Sci. 2016, 27-58.  doi: 10.1016/j.progpolymsci.2016.02.002

    2. [2]

      Seyednejad, H.; Ghassemi, A. H.; Nostrum, C. F. V.; Vermonden, T.; Hennink, W. E. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Controlled Release 2011, 152, 168-176.  doi: 10.1016/j.jconrel.2010.12.016

    3. [3]

      Zhu, N.; Huang, W.; Hu, X.; Liu, Y.; Fang, Z.; Guo, K. Enzymatic continuous flow synthesis of thiol-terminated poly(δ-valerolactone) and block copolymers. Macromol. Rapid Commun. 2018, 39, 1700807.  doi: 10.1002/marc.v39.8

    4. [4]

      Hajiali, F.; Tajbakhsh, S.; Shojaei, A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: A review. Polym. Rev. 2018, 58, 164-207.  doi: 10.1080/15583724.2017.1332640

    5. [5]

      Dash, T. K.; Konkimalla, V. B. Polymeric modification and its implication in drug delivery: Poly-ε-caprolactone (PCL) as a model polymer. Mol. Pharmaceut. 2012, 9, 2365-2379.  doi: 10.1021/mp3001952

    6. [6]

      Wang, J.; Wang, G.; Shan, H.; Wang, X.; Wang, C.; Zhuang, X.; Ding, J.; Chen, X. Gradiently degraded electrospun polyester scaffolds with cytostatic for urothelial carcinoma therapy. Biomater. Sci. 2019, DOI: 10.1039/c1038bm01317a.  doi: 10.1039/c1038bm01317a

    7. [7]

      Chang, L.; Deng, L.; Wang, W.; Lv, Z.; Hu, F.; Dong, A.; Zhang, J. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε-caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Biomacromolecules 2012, 13, 3301-3310.  doi: 10.1021/bm301086c

    8. [8]

      Habnouni, S.E.; Darcos, V.; Coudane, J. Synthesis and ring opening polymerization of a new functional lactone, α-iodo-ε-caprolactone: A novel route to functionalized aliphatic polyesters. Macromol. Rapid Commun. 2009, 30, 165-169.  doi: 10.1002/marc.v30:3

    9. [9]

      Yan, J.; Zhang, Y.; Xiao, Y.; Zhang, Y.; Lang, M. Novel poly(ε-caprolactone)s bearing amino groups: Synthesis, characterization and biotinylation. React. Funct. Polym. 2010, 70, 400-407.  doi: 10.1016/j.reactfunctpolym.2010.03.008

    10. [10]

      Ponsart, S.; Coudane, J.; Vert, M. A novel route to poly(ε-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules 2000, 1, 275-281.  doi: 10.1021/bm005521t

    11. [11]

      You, L.; Ling, J. Janus polymerization. Macromolecules 2014, 47, 2219-2225.  doi: 10.1021/ma500173c

    12. [12]

      Offenloch, J. T.; Mutlu, H.; Barner-Kowollik, C. Interrupted CuAAC ligation: An effcient approach to fluorescence labeled three-armed mikto star polymers. Macromolecules 2018, 51, 2682-2689.  doi: 10.1021/acs.macromol.8b00383

    13. [13]

      Zhao, W.; Wang, Y.; Liu, X.; Chen, X.; Cui, D.; Chen, E. Y. X. Protic compound mediated living cross-chain-transfer polymerization of rac-lactide: Synthesis of isotactic (crystalline)-heterotactic (amorphous) stereomultiblock polylactide. Chem. Commun. 2012, 48, 6375.  doi: 10.1039/c2cc32680a

    14. [14]

      Zhao, W.; Wang, Y.; Liu, X.; Chen, X.; Cui, D. Synthesis of isotactic-heterotactic stereoblock (hard-soft) poly(lactide) with tacticity control through immortal coordination polymerization. Chem-Asian J. 2012, 7, 2403-2410.  doi: 10.1002/asia.201200352

    15. [15]

      Tao, X.; Deng, Y.; Shen, Z.; Ling, J. Controlled polymerization of N-substituted glycine N-thiocarboxyanhydrides initiated by rare earth borohydrides toward hydrophilic and hydrophobic polypeptoids. Macromolecules 2014, 47, 6173-6180.  doi: 10.1021/ma501131t

    16. [16]

      You, L.; Hogen-Esch, T.E.; Zhu, Y.; Ling, J.; Shen, Z. Brønsted acid-free controlled polymerization of tetrahydrofuran catalyzed by recyclable rare earth triflates in the presence of epoxides. Polymer 2012, 53, 4112-4118.  doi: 10.1016/j.polymer.2012.07.047

    17. [17]

      You, L.; Shen, Z.; Kong, J.; Ling, J. A novel approach to RE-OR bond from in situ reaction of rare earth triflates and sodium alkoxides: A versatile catalyst for living ring-opening polymerization of ε-caprolactone. Polymer 2014, 55, 2404-2410.  doi: 10.1016/j.polymer.2014.03.032

    18. [18]

      Li, Y.; Bai, T.; Li, Y.; Ling, J. Branched polytetrahydrofuran and poly(tetrahydrofuran-co-ε-caprolactone) synthesized by Janus polymerization: A novel self-healing material. Macromol. Chem. Phys. 2017, 1600450.

    19. [19]

      Li, Y.; Luhe, M. V. D.; Schacher, F. H.; Ling, J. 3-miktoarm star terpolymers via Janus polymerization: One-step synthesis and self-assembly. Macromolecules 2018, 51, 4938-4944.  doi: 10.1021/acs.macromol.8b00949

    20. [20]

      Wang, Y. Y.; Li, W.; Dai, L. Y. Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane in ionic liquids. Chin. Chem. Lett. 2007, 18, 1187-1190.  doi: 10.1016/j.cclet.2007.08.013

    21. [21]

      Qiu, H.; Yang, Z.; Shah, M. I.; Mao, Z.; Ling, J. [PCL-b-(THF-co-CL)] m multiblock copolymer synthesized by Janus polymerization. Polymer 2017, 128, 71-77.  doi: 10.1016/j.polymer.2017.08.040

    22. [22]

      Shah, M. I.; Yang, Z.; Li, Y.; Jiang, L.; Ling, J. Properties of electrospun nanofibers of multi-block copolymers of [poly-ε-caprolactone-b-poly(tetrahydrofuran-co-ε-caprolactone)]m synthesized by Janus polymerization. Polymers 2017, 9, 559-568.  doi: 10.3390/polym9110559

    23. [23]

      Mukhametshin, T. I.; Petrov, A. I.; Kuznetsova, N. V.; Petrov, V. A.; Averianova, N. V.; Garaev, I. K.; Kostochko, A. V.; Gubaidullin, A. T.; Vinogradov, D. B.; Bulatov, P. V. Synthesis and copolymerization of azidomethyl-substituted oxetanes: The morphology of statistical block copolymers. Chemistry of Heterocyclic Compounds 2017, 53, 811-821.  doi: 10.1007/s10593-017-2128-3

    24. [24]

      Leophairatana, P.; Silva, C. C. D.; Koberstein, J. T. How good is CuAAC 'click' chemistry for polymer coupling reactions? J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 75-84.  doi: 10.1002/pola.28872

    25. [25]

      Ban, Q.; Zhuang, Q.; Su, K.; Wu, S.; Kong, J. Interfacial liquid phase-driven removal of copper ions for bioavailable hyperbranched polytriazoles. J. Mater. Sci. 2018, 53, 10013-10024.  doi: 10.1007/s10853-018-2292-6

    26. [26]

      Arslana, M.; Bicaka, T. C.; Pulidoc, B. A.; Nunescs, S. P.; Yagci, Y. Post modification of acetylene functional poly(oxindole biphenylylene) by photoinduced CuAAC. Eur. Polym. J. 2018, 100, 298-307.  doi: 10.1016/j.eurpolymj.2018.02.009

    27. [27]

      Yoshida, K.; Tanaka, S.; Yamamoto, T.; Tajima, K.; Borsali, R.; Isono, T.; Satoh, T. Chain-end functionalization with a saccharide for 10 nm microphase separation: 'Classical' PS-b-PMMA versus PS-b-PMMA-saccharide. Macromolecules 2018, DOI: 10.1021/acs.macromol.1028b02069.  doi: 10.1021/acs.macromol.8b02069

    28. [28]

      He, W. N.; Xu, J. T.; Du, B. Y.; Fan, Z. Q.; Wang, X. Inorganic-salt-induced morphological transformation of semicrystalline micelles of PCL-b-PEO block copolymer in aqueous solution. Macromol. Chem. Phys. 2010, 211, 1909-1916.  doi: 10.1002/macp.201000184

    29. [29]

      Saravanakumar, G.; Park, H.; Kim, J.; Park, D.; Pramanick, S.; Kim, D. H.; Kim, W. J. Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific β-aminoacrylate junction: Synthesis, self-assembly, and photodynamically triggered drug release. Biomacromolecules 2018, 19, 2202-2213.  doi: 10.1021/acs.biomac.8b00290

    30. [30]

      Takeshita, H.; Fukumoto, K.; Ohnishi, T.; Ohkubo, T.; Miya, M.; Takenaka, K.; Shiomi, T. Formation of lamellar structure by competition in crystallization of both components for crystalline-crystalline block copolymers. Polymer 2006, 47, 8210-8218.  doi: 10.1016/j.polymer.2006.09.043

    31. [31]

      Sun, Y. S.; Chung, T. M.; Li, Y. J.; Ho, R. M.; Ko, B. T.; Jeng, U. S.; Lotz, B. Crystalline polymers in nanoscale 1D spatial confinement. Macromolecules 2006, 39, 5782-5788.  doi: 10.1021/ma0608121

    32. [32]

      Sha, K.; Li, D.; Li, Y.; Zhang, B.; Wang, J. The chemoenzymatic synthesis of a novel CBABC-type pentablock copolymer and its self-assembled "crew-cut" aggregation. Macromolecules 2008, 41, 361-371.  doi: 10.1021/ma0707234

    33. [33]

      Xie, L. H.; Yin, C. R.; Lai, W. Y.; Fan, Q. L.; Huang, W. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog. Polym. Sci. 2012, 37, 1192-1264.  doi: 10.1016/j.progpolymsci.2012.02.003

    34. [34]

      Deng, C.; Yang, Z.; Zheng, Z.; Liua, N.; Ling, J. Photoluminescent nanoparticles in water with tunable emission for coating and ink-jet printing. J. Mater. Chem. C 2015, 3, 3666-3675.  doi: 10.1039/C5TC00318K

    35. [35]

      Tian, Y.; Chen, C. Y.; Yip, H. L.; Wu, W. C.; Chen, W.C.; Jen, A. K. Y. Synthesis, nanostructure, functionality, and application of polyfluorene-block-poly(N-isopropylacrylamide)s. Macromolecules 2010, 43, 282-291.  doi: 10.1021/ma9019619

    36. [36]

      Deng, C.; Jiang, P.; Shen, X.; Ling, J.; Hogen-Esch, T. E. White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups. Polym. Chem. 2014, 5, 5109-5115.  doi: 10.1039/C4PY00595C

    37. [37]

      Sriwichitkamol, K.; Suramitr, S.; Poolmee, P.; Hannongbua, S. Structures, absorption spectra, and electronic properties of polyfluorene and its derivatives: A theoretical study. J. Theor. Comput. Chem. 2006, 5, 595-608.  doi: 10.1142/S0219633606002520

    38. [38]

      Deng, C.; Ling, J. Amphiphilic copolymers of polyfluorene methacrylates exhibiting tunable emissions for ink-jet printing Macromol. Rapid Commun. 2016, 37, 1352-1356.  doi: 10.1002/marc.v37.16

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    5. [5]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    6. [6]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    9. [9]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    10. [10]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    11. [11]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    12. [12]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    13. [13]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    14. [14]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    17. [17]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    18. [18]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    19. [19]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    20. [20]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

Metrics
  • PDF Downloads(0)
  • Abstract views(809)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return