Citation: N. Hamzah, C. P. Leo, B. S. Ooi. Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 609-616. doi: 10.1007/s10118-019-2235-y shu

Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant

  • Corresponding author: C. P. Leo, chcpleo@usm.my
  • Received Date: 19 October 2018
    Revised Date: 18 January 2019
    Available Online: 14 March 2019

  • Superhydrophobic poly(vinylidene fluoride) (PVDF) membrane incorporated with nanoparticles was applied in membrane distillation to recover water from phenolic rich solution containing surfactant. The membranes coated on woven support were fabricated using phase inversion with dual bath coagulation and post-modified using silane. The membranes incorporated with TiO2, SiO2, or a mixture of TiO2-SiO2 nanoparticles achieved the water contact angle higher than 160°. The addition of TiO2-SiO2 mixture into PVDF matrix further enhanced the hierarchical roughness of membrane. Hence, PVDF/TiO2-SiO2 membrane achieved the highest permeation flux and rejected 99.9% of gallic acid in the feed (100 g/L). PVDF/TiO2-SiO2 membrane also maintained a relative flux (J/J0) higher than 0.9 after 8 h of operation. Even with the presence of surfactant in phenolic rich solution, PVDF/TiO2-SiO2 membrane was able to exhibit relative flux above 0.8. The significant changes on the hydrophobicity and chemical properties of PVDF/TiO2-SiO2 membrane due to fouling were not observed after 50 h of static adsorption test.
  • 加载中
    1. [1]

      Cheynier, V. Phenolic compounds: from plants to foods. Phytochem Rev. 2012, 153(11), 153-177.

    2. [2]

      The Cocacola company, Improving Our Water Efficiency. http://www.coca-colacompany.com/stories/setting-a-new-goal-for-water-efficiency, 2017[Accessed 10 December 2017].

    3. [3]

      Rahim, R.; Raman, A. Cleaner production implementation in a fruit juice production plant. J. Clean Prod. 2015, 101, 215-221.  doi: 10.1016/j.jclepro.2015.03.065

    4. [4]

      Sua'rez, L.; Dı'ez, M. A.; Garcı'a, R.; Riera, F. A. Membrane technology for the recovery of detergent compounds: A review. J. Ind. Eng. Chem. 2012, 18, 1859-1873.  doi: 10.1016/j.jiec.2012.05.015

    5. [5]

      Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016, 213, 753-762.  doi: 10.1016/j.foodchem.2016.07.030

    6. [6]

      Akdemir, E. O.; Ozer, A. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 2009, 249, 660-666.  doi: 10.1016/j.desal.2008.06.035

    7. [7]

      Garcia-Castello, E.; Cassano, A.; Criscuoli, A.; Conidi, C.; Drioli, E. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 2010, 44, 3883-3892.  doi: 10.1016/j.watres.2010.05.005

    8. [8]

      Ioannou-Ttofa, L.; Michael-Kordatou, I.; Fattas, S. C.; Eusebio, A.; Ribeiro, B.; Rusan, M.; Amer, A. R. B.; Zuraiqi, S.; Waismand, M.; Linder, C.; Wiesman, Z.; Gilron, J.; Fatta-Kassinos, D. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Water Res. 2017, 114, 1-13.  doi: 10.1016/j.watres.2017.02.020

    9. [9]

      Destani, F.; Cassano, A.; Fazio, A.; Vincken, J. P.; Gabriele, B. Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. J. Food Eng. 2013, 117, 63-271.

    10. [10]

      El-Abbassi, A.; Khayet, M.; Kiai, H.; Hafidi, A.; García-Payo, M. C. Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep. Purif. Technol. 2013, 327-332, 104.

    11. [11]

      Kiai, H.; García-Payo, M. C.; Hafidi, A.; Khayet, M. Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chem. Eng. Process. 2014, 86, 153-161.  doi: 10.1016/j.cep.2014.09.007

    12. [12]

      Macedonio, F.; Drioli, E. Membrane Engineering for Green Process Engineering. Engineering 2017, 3(3), 290-298.  doi: 10.1016/J.ENG.2017.03.026

    13. [13]

      Chang, Y. R.; Lee, Y. J.; Lee, D. J. Membrane fouling during water or wastewater treatments: Current research updated. Taiwan Inst. Chem. Eng. 2018, 1-9(https://doi.org/10.1016/j.jtice.2017.12.019).  doi: 10.1016/j.jtice.2017.12.019

    14. [14]

      Tijing, L. D.; Woo, Y. C.; Choi, J. S.; Lee, S.; Kim, S. H.; Shon, H. K. Fouling and its control in membrane distillation ─A review. J. Membr. Sci. 2015, 475, 215-244.  doi: 10.1016/j.memsci.2014.09.042

    15. [15]

      Li, Y.; Zhu, L. Preparation and characterization of novel poly (vinylidene fluoride) membranes using flower-like Bi 2 WO 6 for membrane distillation. J. Taiwan Inst. Chem. Eng. 2017, 80, 867-874.  doi: 10.1016/j.jtice.2017.07.015

    16. [16]

      Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 2012, 415-416, 850-863.  doi: 10.1016/j.memsci.2012.06.004

    17. [17]

      Dong, Z. Q.; Ma, X.; Xu, Z. L.; You, W. T.; Li, F. Superhydrophobic PVDF-PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination 2014, 347, 175-183.  doi: 10.1016/j.desal.2014.05.015

    18. [18]

      Meng, S.; Ye, Y.; Mansouri, J.; Chen, V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. J. Membr. Sci. 2014, 463, 102-112.  doi: 10.1016/j.memsci.2014.03.027

    19. [19]

      Zhang, W.; Li, Y.; Liu, J.; Li, B.; Wang, S. Fabrication of hierarchical poly (vinylidene fluoride) micro/nano-composite membrane with anti-fouling property for membrane distillation. J. Membr. Sci. 2017, 535, 258-267.  doi: 10.1016/j.memsci.2017.04.051

    20. [20]

      Huang, Y. X.; Wang, Z.; Hou, D.; Lin, S. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J. Membr. Sci. 2017, 531, 122-128.  doi: 10.1016/j.memsci.2017.02.044

    21. [21]

      Hou, D.; Ding, D. L. C.; Wang, D.; Wang, J. Fabrication and characterization of electrospun superhydrophobic PVDFHFP/SiNPs hybrid membrane for membrane distillation. Sep. Purif. Technol. 2017, 189, 82-89.  doi: 10.1016/j.seppur.2017.07.082

    22. [22]

      Yan, K. K.; Jiao, J.; Lin, S.; Ji, X.; Lu, Y.; Zhang, L. Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination 2018, 437, 26-33.  doi: 10.1016/j.desal.2018.02.020

    23. [23]

      Hamzah, N.; Leo, C. P. Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: Separation, fouling and self-cleaning evaluation. Desalination 2017, 418, 79-88.  doi: 10.1016/j.desal.2017.05.029

    24. [24]

      Wang, Z.; Lin, S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 2017, 112, 38-47.  doi: 10.1016/j.watres.2017.01.022

    25. [25]

      Lu, J. K.; Zuo, J.; Chang, J.; Kuan, H. N.; Chung, T. S. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environ. Sci. Technol. 2018, 52, 4472-4480.  doi: 10.1021/acs.est.8b00766

    26. [26]

      Chew, N. G. P.; Zhao, S.; Loh, C. H.; Permogorov, N.; Wang, R. Surfactant effects on water recovery from produced water via direct-contact membrane distillation. J. Membr. Sci. 2017, 528, 126-134.  doi: 10.1016/j.memsci.2017.01.024

    27. [27]

      Chen, Y.; Tian, M.; Li, X.; Wang, Y.; An, A. K.; Fang, J.; He, T. Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. J. Membr. Sci. 2017, 535, 230-238.  doi: 10.1016/j.memsci.2017.04.040

    28. [28]

      Hamzah, N.; Leo, C. P. Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles. Sep. Purif. Technol. 2016, 167, 79-87.  doi: 10.1016/j.seppur.2016.05.005

    29. [29]

      Hamzah, N.; Leo, C. P. Microwave assisted extraction of trigona propolis: The effect of processing parameters. Inter. J. Food Eng. 2015, 11(6), 861-870.

    30. [30]

      Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011, 50(7), 3798-3817.  doi: 10.1021/ie101928r

    31. [31]

      Thomas, R.; Bilad, M. R.; Arafat, H. A. PVDF membranes for membrane distillation: Controlling pore structure, porosity, hydrophobicity, and mechanical strength. In Membrane fabrication. ed. by Hilal, N.; Iamail, A. F.; Wright, C. Boca Raton, FL: CRC Press, 2015, 268.

    32. [32]

      Bhattacharya, M. Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9(4), 262-296.  doi: 10.3390/ma9040262

    33. [33]

      Hurst, S. M.; Farshchian, B.; Choi, J.; Kim, J.; Park, S. A universally applicable method forfabricatin gsuperhydrophobic polymer surfaces. Colloid Surface A 2012, 407, 85-90.  doi: 10.1016/j.colsurfa.2012.05.012

    34. [34]

      Rezaei, M.; Samhaber, W. Wetting behaviour of superhydrophobic membranes coated with nanoparticles in membrane distillation. Chem. Engineer Trans. 2016, 47, 373-378.

    35. [35]

      Karunakaran, R. G.; Lu, C. H.; Zhang, Z.; Yang, S. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤ 100 nm). Langmuir 2011, 27(8), 4594-4602.  doi: 10.1021/la104067c

    36. [36]

      Eykens, L.; Sitter, K. D.; Dotremont, C.; Schepper, W. D.; Pinoy, L.; Bruggen, B. V. D. Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and Oil. Appl. Sci. 2017, 7, 118-130.  doi: 10.3390/app7020118

    37. [37]

      Wang, Z.; Chen, Y.; Sun, X.; Duddu, R.; Lin, S. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant. J. Membr. Sci. 2018, 559, 183-195.  doi: 10.1016/j.memsci.2018.04.045

    38. [38]

      Mehrparvar, A.; Rahimpour, A. Surface modification of novel polyether sulfone amide (PESA) ultrafiltration membranes by grafting hydrophilic monomers. J. Ind. Eng. Chem. 2015, 28, 359-368.  doi: 10.1016/j.jiec.2015.03.016

    39. [39]

      Nath, K.; Patel, T. M.; Dave, H. K. Performance characteristics of surfactant treated commercial polyamide membrane in the nanofiltration of model solution of reactive yellow 160. J. Water Process Eng. 2016, 9, 27-37.  doi: 10.1016/j.jwpe.2015.02.002

  • 加载中
    1. [1]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    4. [4]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    5. [5]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    6. [6]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    7. [7]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    10. [10]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    11. [11]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    12. [12]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    13. [13]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    14. [14]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    15. [15]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    16. [16]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    17. [17]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    18. [18]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    19. [19]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    20. [20]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

Metrics
  • PDF Downloads(0)
  • Abstract views(759)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return