Citation: Ke Ou, Xian Xu, Yu Shao, Wei-Jie Wang, Wen-Bin Zhang, Shu-Guang Yang. Langmuir-Blodgett Films of C60-end-capped Poly(ethylene oxide)[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 604-608. doi: 10.1007/s10118-019-2234-z shu

Langmuir-Blodgett Films of C60-end-capped Poly(ethylene oxide)

  • Corresponding author: Shu-Guang Yang, shgyang@dhu.edu.cn
  • Received Date: 25 November 2018
    Revised Date: 17 January 2019
    Accepted Date: 1 January 2018
    Available Online: 7 March 2019

  • Buckyballs (C60) are linked to one end and two ends of linear poly(ethylene oxide) (PEO) chains through highly efficient click chemistry to obtain giant amphiphilic molecules C60-PEO and C60-PEO-C60, respectively. C60-PEO and C60-PEO-C60 molecules are spread on water surface and then transferred to solid substrates with Langmuir-Blodgett (LB) film deposition approach. C60-PEO and C60-PEO-C60 exhibit fractal growth behavior on the solid substrate under certain conditions owing to the crystallization ability of PEO segment. PEO chain length and the end capped mode both affect the fractal growth pattern.
  • 加载中
    1. [1]

      Zhang, W. B.; Tu, Y. F.; Ranjan, R.; Horn, R. M. V.; Leng, S. W.; Wang, J.; Polce, M. J.; Wesdemiotis, C.; Quirk, R. P.; Newkome, G. R.; Cheng, S. Z. D. " Clicking” fullerene with polymers: synthesis of [60]fullerene end-capped polystyrene. Macromolecules 2008, 41, 515-517.  doi: 10.1021/ma702345r

    2. [2]

      Liu, H.; Hsu, C. H.; Lin, Z. W.; Shan, W. P.; Wang, J.; Jiang, J.; Huang, M. J.; Lotz, B.; Yu, X. F.; Zhang, W. B.; Yue, K.; Cheng, S. Z. D. Two-dimensional nanocrystals of molecular janus particles. J. Am. Chem. Soc. 2014, 136, 10691-10699.  doi: 10.1021/ja504497h

    3. [3]

      Zhang, W. A.; Müller, A. H. E. Architecture, Self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog. Polym. Sci. 2013, 38, 1121-1162.  doi: 10.1016/j.progpolymsci.2013.03.002

    4. [4]

      Han, Y. K.; Xiao, Y.; Zhang, Z. J.; Liu, B.; Zheng, P.; He, S. J.; Wang, W. Synthesis of polyoxometalate-polymer hybrid polymers and their hybrid vesicular assembly. Macromolecules 2009, 42, 6543-6548.  doi: 10.1021/ma9011686

    5. [5]

      Luo, Z. X.; Castleman, A. W. Special and general superatoms. Acc. Chem. Res. 2014, 47, 2931-2940.  doi: 10.1021/ar5001583

    6. [6]

      Roy, X.; Lee, C. H.; Crowther, A. C.; Schenck, C. L.; Besara, T.; Lalancette, R. A.; Siegrist, T.; Stephens, P. W.; Brus, L. E.; Kim, P.; Steigerwald, M. L.; Nuckolls, C. Nanoscale atoms in solid-state chemistry. Science 2013, 341, 157-160.  doi: 10.1126/science.1236259

    7. [7]

      Li, B.; Li, W.; Li, H. L.; Wu, L. X. Ionic complexes of metal oxide clusters for versatile self-assemblies. Acc. Chem. Res. 2017, 50, 1391-1399.  doi: 10.1021/acs.accounts.7b00055

    8. [8]

      Tang, W.; Yue, K.; Cheng, S. Z. D. Molecular topology effects in self-assembly of giant surfactants. Acta Polymerica Sinica (in Chinese) 2018, 8, 959-972.

    9. [9]

      Huang, M. J.; Hsu, C. H.; Wang, J.; Mei, S.; Dong, X. H.; Li, Y. W.; Li, M. X.; Liu, H.; Zhang, W.; Aida, T.; Zhang, W. B.; Yue, K.; Cheng, S. Z. D. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 2015, 24, 424-428.

    10. [10]

      Zhang, W. B.; Yu, X. F.; Wang, C. L.; Sun, H. J.; Hsieh, I. F.; Li, Y. W.; Dong, X. H.; Yue, K.; Horn, R. V.; Cheng, S. Z. D. Molecular nanoparticles are unique elements for macromolecular science: from " nanoatoms” to giant molecules. Macromolecules 2014, 47, 1221-1239.  doi: 10.1021/ma401724p

    11. [11]

      Zhang, W. B.; Chen, E. Q.; Wang, J.; Zhang, W.; Wang, L. G.; Cheng, S. Z. D. Soft matters from " nano-atoms” to " giant molecules”. Acta Phys. Sin. 2016, 65, 183601.

    12. [12]

      Yu, X. F.; Zhong, S.; Li, X. P.; Tu, Y. F.; Yang, S. G.; Horn, R. M. V.; Ni, C. Y.; Pochan, D. J.; Quirk, R. P.; Wesdemiotis, C.; Zhang, W. B.; Cheng, S. Z. D. A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J. Am. Chem. Soc. 2010, 132, 16741-16744.  doi: 10.1021/ja1078305

    13. [13]

      Yu, X. F.; Zhang, W. B.; Yue, K.; Li, X. P.; Liu, H.; Xin, Y.; Wang, C. L.; Wesdemiotis, C.; Cheng, S. Z. D. Giant molecular shape amphiphiles based on polystyrene-hydrophilic [60]fullerene conjugates: click synthesis, solution self-assembly, and phase behavior. J. Am. Chem. Soc. 2012, 134, 7780-7787.  doi: 10.1021/ja3000529

    14. [14]

      Yue, K.; Huang, M. J.; Marson, R. L.; He, J. L.; Huang, J. H.; Zhou, Z.; Wang, J.; Liu, C.; Yan, X. S.; Wu, K.; Guo, Z. H.; Liu, H.; Zhang, W.; Ni, P. H.; Wesdemiotis, C.; Zhang, W. B.; Glotzer, S. C.; Cheng, S. Z. D. Geometry induced sequence of nanoscale frank-kasper and quasicrystal mesophases in giant surfactants. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 14195-14200.  doi: 10.1073/pnas.1609422113

    15. [15]

      Zhang, B.; Ma, C.; Wang, X.; Hu, M.; Wang, X.; Wang, W. Langmuir and Langmuir-Blodgett films of two dumbbell-shaped hybrids composed of a polyoxometallate and two polyhedral oligosilsesquioxanes. Acta Chimica Sinica (in Chinese) 2015, 73, 441-449.  doi: 10.6023/A15010083

    16. [16]

      Zasadzinski, J. A.; Viswanathan, R.; Madsen, L.; Garnaes, J.; Schwartz, D. K. Langmuir-Blodgett films. Science 1994, 263, 1726-1733.  doi: 10.1126/science.8134836

    17. [17]

      Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. 25th anniversary article: what can be done with the Langmuir-Blodgett method? recent developments and its critical role in materials science. Adv. Mater. 2013, 25, 6477-6512.  doi: 10.1002/adma.201302283

    18. [18]

      Jiang, M.; Zhai, X. D.; Liu, M. H. Hybrid molecular films of gemini amphiphiles and keggin-type polyoxometalates: effect of the spacer length on the electrochemical properties. J. Mater. Chem. 2007, 17, 193-200.  doi: 10.1039/B610029E

    19. [19]

      Hong, Z. M.; Shi, G. Q.; Wu, X. F.; Qu, L. T. Fabrication of highly hydrophobic films of poly(3-hexadecyl pyrrole) nanoparticles by Langmuir-Blodgett technique. Chinese J. Polym. Sci. 2006, 24, 457-462.  doi: 10.1142/S0256767906001527

    20. [20]

      Gong, Y.; Yuan, Q.; Nie, J.; Yang, S. G. Study on morphology of polystyrene-b-poly(4-vinyl pyridine) block copolymer LB film. Acta Chimica Sinica (in Chinese) 2017, 6, 967-973.

    21. [21]

      Reiter, G.; Sommer, J. U. Crystallization of adsorbed polymer monolayers. Phys. Rev. Lett. 1998, 80, 3771-3774.  doi: 10.1103/PhysRevLett.80.3771

    22. [22]

      Reiter, G.; Castelein, G.; Sommer, J. U. Liquidlike morphological transformations in monolamellar polymer crystals. Phys. Rev. Lett. 2001, 86, 5918-5921.  doi: 10.1103/PhysRevLett.86.5918

    23. [23]

      Zhai, X. M.; Wang, W.; Zhang, G. L.; He, B. L. Crystal pattern formation and transitions of PEO monolayers on solid substrates from nonequilibrium to near equilibrium. Macromolecules 2006, 39, 324-329.

    24. [24]

      Zhai, X. M.; Wang, W.; Ma, Z. P.; Wen, X. J.; Yuan, F.; Tang, X. F.; He, B. L. Spontaneous and inductive thickenings of lamellar crystal monolayers of low molecular weight PEO fractions on surface of solid substrates. Macromolecules 2005, 38, 1717-1722.  doi: 10.1021/ma047764+

    25. [25]

      Zhang, G. L.; Zhai, X. M.; Ma, Z. P.; Jin, L. X.; Zheng, P.; Wang, W.; Cheng, S. Z. D.; Lotz, B. Morphology diagram of single-layer crystal patterns in supercooled poly(ethylene oxide) ultrathin films: understanding macromolecular effect of crystal pattern formation and selection. ACS Macro Lett. 2012, 1, 217-221.  doi: 10.1021/mz2001109

    26. [26]

      An, Y. Z.; Chen, C. H. B.; Anderson, J. L.; Sigman, D. S.; Foote, C. S.; Rubin, Y. Sequence-specific modification of guanosine in DNA by a C60-linked deoxyoligonucleotide: evidence for a non-singlet oxygen mechanism. Tetrahedron 1996, 52, 5179-5189.  doi: 10.1016/0040-4020(96)00123-8

    27. [27]

      An, Y. Z.; Anderson, J. L.; Rubin, Y. Synthesis of alpha-amino acid derivatives of C60 from 1,9-(4-hydroxycyclohexano)buckminsterfullerene. J. Org. Chem. 1993, 58, 4799-4801.  doi: 10.1021/jo00070a010

    28. [28]

      Ganapathi, P. S.; Friedman, S. H.; Kenyon, G. L.; Rubin, Y. Sequential "bis-michael" additions of dienolates with C60: rapid access to sterically congested buckminsterfullerene derivatives with defined stereochemistry. J. Org. Chem. 1995, 60, 2954-2955.  doi: 10.1021/jo00115a002

    29. [29]

      Zhang, W. B.; He, J. L.; Dong, X. H.; Wang, C. L.; Li, H.; Teng, F.; Li, X. P.; Wesdemiotis, C.; Quirk, R. P.; Cheng, S. Z. D. Improved synthesis of fullerynes by fisher esterification for modular and efficient construction of fullerene polymers with high fullerene functionality. Polymer 2011, 52, 4221-4226.  doi: 10.1016/j.polymer.2011.07.026

    30. [30]

      Cheng, S. Z. D. in Phase transitions in polymers, the role of metastable states, Chapter 4, Elsevier, 2008.

    31. [31]

      Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: buckminsterfullerene. Nature 1985, 318, 162-163.  doi: 10.1038/318162a0

    32. [32]

      Cheyne, R. B.; Moffitt, M. G.; Self-assembly of polystyrene-block-poly(ethylene oxide) copolymers at the air-water interface: is dewetting the genesis of surface aggregate formation? Langmuir 2006, 22, 8387-8396.  doi: 10.1021/la061953z

    33. [33]

      Cheyne, R. B.; Moffitt, M. G.; Hierarchical nanoparticle/block copolymer surface features via synergistic self-assembly at the air-water interface. Langmuir 2005, 21, 10297-10300.  doi: 10.1021/la0519397

    34. [34]

      Zhang, G. L.; Cao, Y.; Jin, L. X.; Zheng, P.; Horn, R. M. V.; Lotz, B.; Cheng, S. Z. D.; Wang W. Crystal growth pattern changes in low molecular weight poly(ethylene oxide) ultrathin films. Polymer 2011, 52, 1133-1140.  doi: 10.1016/j.polymer.2011.01.002

    35. [35]

      Dong, X. H.; Horn, R. V.; Chen, Z. R.; Ni, B.; Yu, X. F.; Wurm, A.; Schick, C.; Lotz, B.; Zhang, W. B.; Cheng, S. Z. D. Exactly defined half-stemmed polymer lamellar crystals with precisely controlled defects locations. J. Phys. Chem. Lett. 2013, 4, 2356-2360.  doi: 10.1021/jz401132j

    36. [36]

      Cheng, S. Z. D.; Zhang, A. Q.; Chen, J. H.; Existence of a transient nonintegral folding lamellar crystal in a low molecular mass poly(ethylene oxide) fraction crystallized from the melt. J. Polym. Sci.,: Polym. Lett. 1990, 28, 233-239.  doi: 10.1002/polb.1990.090280209

  • 加载中
    1. [1]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    2. [2]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    3. [3]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    4. [4]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    7. [7]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    8. [8]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    9. [9]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    10. [10]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    11. [11]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    12. [12]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    13. [13]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    14. [14]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    15. [15]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    16. [16]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    17. [17]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    18. [18]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    19. [19]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    20. [20]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

Metrics
  • PDF Downloads(0)
  • Abstract views(742)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return