Citation: Mineto Uchiyama, Masataka Sakaguchi, Kotaro Satoh, Masami Kamigaito. A User-friendly Living Cationic Polymerization: Degenerative Chain-transfer Polymerization of Vinyl Ethers by Simply Using Mixtures of Weak and Superstrong Protonic Acids[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 851-857. doi: 10.1007/s10118-019-2233-0 shu

A User-friendly Living Cationic Polymerization: Degenerative Chain-transfer Polymerization of Vinyl Ethers by Simply Using Mixtures of Weak and Superstrong Protonic Acids

  • Mixtures of a weak protonic acid and a trace amount of superstrong protonic acid were used for the simple control of the cationic polymerization of vinyl ethers via a degenerative chain-transfer mechanism, in which the former acid works as a precursor of the chain transfer agent (CTA) or the dormant species and the latter works as a source of the cationic propagating species. The addition of mixtures of phosphoric acid dibutyl ester ((n-BuO)2PO2H) or 1-octanethiol (n-C8H17SH) and a trace amount of trifluoromethanesulfonic acid (TfOH) to a solution of isobutyl vinyl ether (IBVE) at −78 °C resulted in polymers with controlled molecular weights, which were basically determined by the feed ratio of IBVE to the weak protonic acid, and narrow molecular weight distributions (Mw/Mn ≈ 1.1). These results were almost the same as those obtained using their prepared adducts of IBVE as CTAs in the presence of a trace amount of TfOH under similar conditions. Methanesulfonic acid (CH3SO3H), whose adduct of IBVE has not been isolated due to instability, was similarly used in conjunction with trace TfOH to result in controlled molecular weights but slightly broader MWDs (Mw/Mn = 1.2–1.8). These results indicate that the sulfoxonium ion is also an effective intermediate in the cationic DT polymerization in addition to the phosphonium and sulfonium intermediates derived from (n-BuO)2PO2H and n-C8H17SH, respectively. The simple living cationic polymerization was thus achieved by using a combination of a weak protonic acid and a trace amount of TfOH, which are both easily available, low cost, free from metal, and easy to handle, without need for preparation of the initiator.
  • 加载中
    1. [1]

      Matyjaszewski, K.; Müller, A. H. E. Controlled and living polymerizations; From mechanisms to applications, Wiley-VCH, Weinheim, 2010.

    2. [2]

      Miyamoto, M.; Sawamoto, M.; Higashimura, T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules 1984, 17, 265-268.  doi: 10.1021/ma00133a001

    3. [3]

      Faust, R.; Kennedy, J. P. Living carbocationic polymerization III. Demonstration of the living polymerization of isobutylene. Polym. Bull. 1986, 15, 317-323.

    4. [4]

      Sawamoto, M. Modern cationic vinyl polymerization. Prog. Polym. Sci. 1991, 16, 111-172.  doi: 10.1016/0079-6700(91)90008-9

    5. [5]

      Kennedy, J. P.; Iván. B. Designed polymers by carbocationic macromolecular engineering: Theory and practice, Hanser Publishers, New York, 1992.

    6. [6]

      Matyjaszewski, K. Cationic polymerizations: Mechanisms, synthesis & applications, Marcel Dekker, New York, 1996.

    7. [7]

      Puskas, J. E.; Kaszas, G. Living carbocationic polymerization of resonance-stabilized monomers. Prog. Polym. Sci. 2000, 25, 403-452.  doi: 10.1016/S0079-6700(00)00010-1

    8. [8]

      Goethals, E. J.; Du Prez, F. Carbocationic polymerizations. Prog. Polym. Sci. 2007, 32, 220-246.  doi: 10.1016/j.progpolymsci.2007.01.001

    9. [9]

      Aoshima, S.; Kanaoka, S. A Renaissance in living cationic polymerization. Chem. Rev. 2009, 109, 5245-5287.  doi: 10.1021/cr900225g

    10. [10]

      Uchiyama, M.; Satoh, K.; Kamigaito, M. Cationic RAFT polymerization Using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 2015, 54, 1924-1928.  doi: 10.1002/anie.201410858

    11. [11]

      Uchiyama, M.; Satoh, K.; Kamigaito, M. Thioether-mediated degenerative chain-transfer cationic polymerization: A simple metal-free system for living cationic polymerization. Macromolecules 2015, 48, 5533-5542.  doi: 10.1021/acs.macromol.5b01341

    12. [12]

      Uchiyama, M.; Satoh, K.; Kamigaito, M. A phosphonium intermediate for cationic RAFT polymerization. Polym. Chem. 2016, 7, 1387-1396.  doi: 10.1039/C5PY01879J

    13. [13]

      McKenzie, T. G.; Fu, Q.; Uchiyama, M.; Satoh, K.; Xu, J.; Boyer, C.; Kamigaito, M.; Qiao, G. G. Beyond traditional RAFT: Alternative activation of thiocarbonylthio compounds for controlled polymerization. Adv. Sci. 2016, 3, 1500394.  doi: 10.1002/advs.201500394

    14. [14]

      Kamigaito, M.; Satoh, K.; Uchiyama, M. Degenerative chain-transfer process: Controlling all chain-growth polymerizations and enabling novel monomer sequences. J. Polym. Sci,: Part A: Polym. Chem. 2019, doi: 10.1002/pola.29257.  doi: 10.1002/pola.29257

    15. [15]

      Moad, G.; Rizzardo, E.; Thang, S. H. Toward living radical polymerization. Acc. Chem. Res. 2008, 41, 1133-1142.  doi: 10.1021/ar800075n

    16. [16]

      Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the scope of RAFT polymerization: Recent advances and new horizons. Macromolecules 2015, 48, 5459-5469.  doi: 10.1021/acs.macromol.5b00342

    17. [17]

      Perrier, S. RAFT polymerization - A user guide. Macromolecules 2017, 50, 7433-7447.  doi: 10.1021/acs.macromol.7b00767

    18. [18]

      David, G.; Boyer, C.; Tonnar, J.; Améduri, B.; Lacroix-Desmazes, P.; Boutevin, B. Use of iodocompouds in radical polymerization. Chem. Rev. 2006, 106, 3936-3962.  doi: 10.1021/cr0509612

    19. [19]

      Yamago, S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem. Rev. 2009, 109, 5051-5068.  doi: 10.1021/cr9001269

    20. [20]

      Debuigne, A.; Poli, R.; Jérôme, C.; Jérôme, R.; Detrembleur, C. Overview of cobalt-mediated radical polymerization: Roots, state of the art and future prospects. Prog. Polym. Sci. 2009, 34, 211-239.  doi: 10.1016/j.progpolymsci.2008.11.003

    21. [21]

      Poli, R.; Allan, L. E. N.; Shaver, M. P. Iron-mediated reversible deactivation controlled radical polymerization. Prog. Polym. Sci. 2014, 39, 1827-1845.  doi: 10.1016/j.progpolymsci.2014.06.003

    22. [22]

      Asandei, A. D. Photomediated controlled radical polymerization and block copolymerization of vinylidene fluoride. Chem. Rev. 2016, 116, 2244-2274.  doi: 10.1021/acs.chemrev.5b00539

    23. [23]

      Uchiyama, M.; Satoh, K.; Kamigaito, M. Diversifying cationic RAFT polymerization with various counteranions: Generation of cationic species from organic halides and various metal salts. ACS Macro Lett. 2017, 6, 393-398.  doi: 10.1021/acsmacrolett.7b00150

    24. [24]

      Uchiyama, M.; Satoh, K.; McKenzie, T. G.; Fu, Q.; Qiao, G. G.; Kamigaito, M. Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation. Polym. Chem. 2017, 8, 5972-5981.  doi: 10.1039/C7PY01401E

    25. [25]

      Guerre, M.; Uchiyama, M.; Folgado, E.; Semsarilar, M.; Améduri, B.; Satoh, K.; Kamigaito, M.; Ladmiral, V. Combination of cationic and radical RAFT polymerizations: A versatile route to well-defined poly(ethyl vinyl ether)-block-poly(vinylidene fluoride) block copolymers. ACS Macro Lett. 2017, 6, 393-398.  doi: 10.1021/acsmacrolett.7b00150

    26. [26]

      Guerre, M.; Uchiyama, M.; Lopez, G.; Améduri, B.; Satoh, K.; Kamigaito, M.; Ladmiral, V. Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polym. Chem. 2018, 9, 352-361.  doi: 10.1039/C7PY01924F

    27. [27]

      Sugihara, S.; Konegawa, N.; Maeda, Y. HCl·Et2O-catalyzed metal-free RAFT cationic polymerization: One-pot transformation from metal-free living cationic polymerization to RAFT radical polymerization. Macromolecules 2015, 48, 5120-5131.  doi: 10.1021/acs.macromol.5b01071

    28. [28]

      Sugihara, S.; Okubo, S.; Maeda, Y. Metal-free RAFT cationic polymerization of p-methoxystyrene with HCl·Et2O using a xanthate-type RAFT cationogen. Polym. Chem. 2016, 7, 6854-6863.  doi: 10.1039/C6PY01684G

    29. [29]

      Perkowski, A. J.; You, W.; Nicewicz, D. A. Visible light photoinitiated metal-free living cationic polymerization of 4-methoxystyrene. J. Am. Chem. Soc. 2015, 137, 7580-7583.  doi: 10.1021/jacs.5b03733

    30. [30]

      Kottisch, V.; Michaudel, Q.; Fors, B. P. Cationic polymerization of vinyl ethers controlled by visible light. J. Am. Chem. Soc. 2016, 138, 15535-15538.  doi: 10.1021/jacs.6b10150

    31. [31]

      Kottisch, V.; Michaudel, Q.; Fors, B. P. Photocontrolled interconversion of cationic and radical polymerizations. J. Am. Chem. Soc. 2017, 139, 10665-10668.  doi: 10.1021/jacs.7b06661

    32. [32]

      Michaudel, Q.; Chauviré, T.; Kottisch, V.; Supej, M. J.; Stawiasz, K. J.; Shen, L.; Zipfel, W. R.; Abruña, H. D.; Freed, J. H.; Fors, B. P. Mechanistic insight into the photocontrolled cationic polymerization of vinyl ethers. J. Am. Chem. Soc. 2017, 139, 15530-15538.  doi: 10.1021/jacs.7b09539

    33. [33]

      Michaudel, Q.; Kottisch, V.; Fors, B. P. Cationic polymerization: From photoinitiation to photocontrol. Angew. Chem. Int. Ed. 2017, 56, 9670-9679.  doi: 10.1002/anie.201701425

    34. [34]

      Kottisch, V.; Supej, M. J.; Fors, B. P. Enhancing temporal control and enabling chain-end modification in photoregulated cationic polymerizations by using Ir-based catalysts. Angew. Chem. Int. Ed. 2018, 57, 8260-8264.  doi: 10.1002/anie.201804111

    35. [35]

      Peterson, B. M.; Lin, S.; Fors, B. P. Electrochemically controlled cationic polymerization of vinyl ethers. J. Am. Chem. Soc. 2018, 140, 2076-2079.  doi: 10.1021/jacs.8b00173

    36. [36]

      Sang, W.; Yan, Q. Electro-controlled living cationic polymerization. Angew. Chem. Int. Ed. 2018, 57, 4907-4911.  doi: 10.1002/anie.201712270

    37. [37]

      Peterson, B. M.; Kottisch, V.; Supej, M. J.; Fors, B. P. On Demand switching of polymerization mechanism and monomer selectivity with orthogonal stimuli. ACS Cent. Sci. 2018, 4, 1228-1234.  doi: 10.1021/acscentsci.8b00401

    38. [38]

      Kishimoto, Y.; Aoshima, S.; Higashimura, T. Living cationic polymerization of vinyl monomers by organoaluminum halides. 4. Polymerization of isobutyl vinyl ether by ethylaluminum dichloride (EtAlCl2) in the presence of ether additives. Macromolecules 1989, 22, 3877-3882.  doi: 10.1021/ma00200a010

    39. [39]

      Kamigaito, M.; Sawamoto, M.; Higashimura, T. Living cationic polymerization of isobutyl vinyl ether by protonic acid/zinc halide initiating systems: Evidence for the halogen exchange with zinc halide in the growing species. Macromolecules 1992, 25, 2587-2591.  doi: 10.1021/ma00036a004

    40. [40]

      Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 1988, 21, 456-463.  doi: 10.1021/ar00156a004

    41. [41]

      Node, N.; Kumar, K.; Nishide, K.; Ohsugi, S.; Miyamoto, T. Odorless substituents for foul-smelling thiols: Synthesis and applications. Tetrahedron Lett. 2001, 42, 9207-9210.  doi: 10.1016/S0040-4039(01)02024-X

    42. [42]

      Ciftci, M.; Yoshikawa, Y.; Yagci, Y. Living cationic polymerization of vinyl ethers through a photoinduced radical oxidation/addition/deactivation sequence. Angew. Chem. Int. Ed. 2017, 56, 519-1928.  doi: 10.1002/anie.201609357

  • 加载中
    1. [1]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    2. [2]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    3. [3]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    6. [6]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    7. [7]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    8. [8]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    9. [9]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    10. [10]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    11. [11]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    12. [12]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    13. [13]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    14. [14]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    15. [15]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    16. [16]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    17. [17]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    18. [18]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    19. [19]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    20. [20]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

Metrics
  • PDF Downloads(0)
  • Abstract views(888)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return