Citation: Juan Du, Ji-Hu Wang, Hai-Yan Yu, Yan-Yan Zhang, Li-Hui Pu, Jin-Cheng Wang, Shu-Yang Lu, Si-Hao Chen, Tong-He Zhu. Electrospun Poly(p-dioxanone)/Poly(ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 560-569. doi: 10.1007/s10118-019-2231-2 shu

Electrospun Poly(p-dioxanone)/Poly(ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction

  • Corresponding author: Si-Hao Chen, chensh@sues.edu.cn Tong-He Zhu, zhutonghe89@163.com
  • Received Date: 23 December 2018
    Revised Date: 19 January 2019
    Available Online: 27 February 2019

  • Electrospun nanofibrous mats represent a new generation of medical textiles with promising applications in heart valve tissue reconstruction. It is important for biomaterials to mimic the biological and mechanical microenvironment of native extracellular matrix (ECM). However, the major challenges are still remaining for current biomedical materials, including appropriate mechanical properties, biocompatibility, and hemocompatibility. In the present work, the novel composite nanofibrous mats of poly(p-dioxanone) (PDO) and poly(ester-urethane)ureas (PEUU) are fabricated by electrospinning system. The optimal combination ratio of PDO to PEUU may balance the mechanical properties and cellular compatibility to match the newly formed tissue. In PDO/PEUU composite nanofibrous mats, PEUU can provide the biomimetic elastomeric behavior, and PDO could endow the excellent biocompatibility. In comparison to nanofibrous mat of neat PDO, the composite showed significantly improved mechanical properties, with 5-fold higher initial elongation at break. Furthermore, human umbilical vein endothelial cells (HUVECs) were cultured on the composite to evaluate its ability to rapidly endothelialize as heart valve tissue engineering. The results revealed that PDO/PEUU composite nanofibrous mats could promote cell adhesion and proliferation, especially for the ratio of 60/40. Overall, PDO/PEUU composite nanofibrous mats (60/40) show the excellent mechanical properties, appropriate biocompatibility and hemocompatibility which meet the necessary norm for tissue engineering and may be suitable for potential heart valve tissue reconstruction.
  • 加载中
    1. [1]

      Yang, G. Z.; Li, J. J.; Yu, D. G.; He, M. F.; Yang, J. H.; Williams, G. R. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater. 2017, 53, 233-241.  doi: 10.1016/j.actbio.2017.01.069

    2. [2]

      Mogosanu, G. D.; Grumezescu, A. M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharmaceut. 2014, 463, 127-136.  doi: 10.1016/j.ijpharm.2013.12.015

    3. [3]

      Zhao, G. X.; Zhang, X. H.; Lu, T. J.; Xu, F. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Func. Mater. 2015, 25, 5726-5738.  doi: 10.1002/adfm.201502142

    4. [4]

      Luo, X. S.; Guo, Z. Z.; He, P.; Chen, T.; Ding, S.; Li, H. Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents. Int. J. Biol. Macromol. 2018, 113, 476-486.  doi: 10.1016/j.ijbiomac.2018.01.179

    5. [5]

      Brown, J. H.; Das, P.; Di Vito, M. D.; Ivancic, D.; Tan, L. P.; Wertheim, J. A. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 2018, 73, 217-227.  doi: 10.1016/j.actbio.2018.02.009

    6. [6]

      Francis, M. P.; Sachs, P. C.; Madurantakam, P. A.; Sell, S. A.; Elmore, L. W.; Bowlin, G. L.; Holt, S. E. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J. Biomed. Mater. Res. Part A 2012, 100A, 1716-1724.  doi: 10.1002/jbm.a.v100a.7

    7. [7]

      Yu, K.; Zhu, T. H.; Wu, Y.; Zhou, X. X.; Yang, X. C.; Wang, J.; Fang, J.; El-Hamshary, H.; Al-Deyab, S. S.; Mo, X. M. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Coll. Surf. B. 2017, 151, 314-323.  doi: 10.1016/j.colsurfb.2016.12.034

    8. [8]

      Jamadi, E. S.; Ghasemi-Mobarakeh, L.; Morshed, M.; Sadeghi, M.; Prabhakaran, M. P.; Ramakrishna, S. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration. Mat. Sci. Eng C-Mater. 2016, 63, 106-116.  doi: 10.1016/j.msec.2016.02.051

    9. [9]

      Simon, D.; Rodriguez, J. F.; Carmona, M.; Serrano, A.; Borreguero, A. M. Glycolysis of advanced polyurethanes composites containing thermoregulating microcapsules. Chem. Eng. J. 2018, 350, 300-311.  doi: 10.1016/j.cej.2018.05.158

    10. [10]

      Wang, Z. G.; Yu, L. Q.; Ding, M. M.; Tan, H.; Li, J. H.; Fu, Q. A. Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysine diisocyanate. Polym. Chem. 2011, 2, 601-607.  doi: 10.1039/C0PY00235F

    11. [11]

      Fang, J.; Ye, S. H.; Shankarraman, V.; Huang, Y. X.; Mo, X. M.; Wagner, W. R. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomater. 2014, 10, 4639-4649.  doi: 10.1016/j.actbio.2014.08.008

    12. [12]

      Hao, H. Y.; Shao, J. Y.; Deng, Y.; He, S.; Luo, F.; Wu, Y. K.; Li, J. H.; Tan, H.; Li, J. S.; Fu, Q. Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. Biomater. Sci. 2016, 4, 1682-1690.  doi: 10.1039/C6BM00588H

    13. [13]

      Liu, J.; Jiang, Z. Z.; Zhang, S. M.; Liu, C.; Gross, R. A.; Kyriakides, T. R.; Saltzman, W. M. Biodegradation, biocompatibility, and drug delivery in poly(omega-pentadecalactone-co-p-dioxanone) copolyesters. Biomaterials 2011, 32, 6646-6654.  doi: 10.1016/j.biomaterials.2011.05.046

    14. [14]

      Bai, Y.; Wang, P. Q.; Bai, W.; Zhang, L. F.; Li, Q.; Xiong, C. D. Miscibility, thermal and mechanical properties of poly(para-dioxanone)/poly(lactic-co-glycolic acid) blends. J. Polym. Environ. 2015, 23, 367-373.  doi: 10.1007/s10924-014-0686-3

    15. [15]

      Du, J.; Zhu, T. H.; Yu, H. Y.; Zhu, J. J.; Sun, C. B.; Wang, J. C.; Chen, S. H.; Wang, J. H.; Guo, X. R. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl. Surf. Sci. 2018, 447, 269-278.  doi: 10.1016/j.apsusc.2018.03.077

    16. [16]

      Hong, Y.; Ye, S. H.; Pelinescu, A. L.; Wagner, W. R. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity. Biomacromolecules 2012, 13, 3686-3694.  doi: 10.1021/bm301158j

    17. [17]

      Guo, R. J.; Ward, C. L.; Davidson, J. M.; Duvall, C. L.; Wenke, J. C.; Guelcher, S. A. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials 2015, 54, 21-33.  doi: 10.1016/j.biomaterials.2015.03.010

    18. [18]

      Nair, P. A.; Ramesh, P. Electrospun biodegradable calcium containing poly(ester-urethane)urea: Synthesis, fabrication, in vitro degradation, and biocompatibility evaluation. J. Bio. Mater. Res-Part A 2013, 101, 1876-1887.

    19. [19]

      Zhu, T. H.; Yu, K.; Bhutto, M. A.; Guo, X. R.; Shen, W.; Wang, J.; Chen, W. M.; El-Hamshary, H.; Al-Deyab, S. S.; Mo, X. M. Synthesis of RGD-peptide modified polyester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chem. Eng. J. 2017, 315, 177-190.  doi: 10.1016/j.cej.2016.12.134

    20. [20]

      Mi, H. Y.; Jing, X.; Yu, E.; Nulty, J. M.; Peng, X. F.; Turng, L. S. Fabrication of triple-layered vascular scaffolds by combining electrospinning, braiding, and thermally induced phase separation. Mater. Lett. 2015, 161, 305-308.  doi: 10.1016/j.matlet.2015.08.119

    21. [21]

      Zheng, F. Y.; Wang, S. G.; Wen, S. H.; Shen, M. W.; Zhu, M. F.; Shi, X. Y. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013, 34, 1402-1412.  doi: 10.1016/j.biomaterials.2012.10.071

    22. [22]

      Hong, Y.; Huber, A.; Takanari, K.; Amoroso, N. J.; Hashizume, R.; Badylak, S. F.; Wanger, W. R. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 2011, 32, 3387-3394.  doi: 10.1016/j.biomaterials.2011.01.025

    23. [23]

      Xiang, P.; Wang, S. S.; He, M.; Han, Y. H.; Zhou, Z. H.; Chen, D. L.; Li, M.; Ma, L. Q. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Coll. Surf. B. 2018, 163, 19-28.  doi: 10.1016/j.colsurfb.2017.12.020

    24. [24]

      Sabitha, M.; Rajetciv, S. Synthesis and characterization of biocompatible tigecycline imbibed electrospun poly epsilon-caprolactone urethane urea fibers. RSC Adv. 2015, 5, 2249-2257.  doi: 10.1039/C4RA08458F

    25. [25]

      Song, N. J.; Jiang, X.; Li, J. H.; Pang, Y.; Li, J. S.; Tan, H.; Fu, Q. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chinese J. Polym. Sci. 2013, 31, 1451-1462.  doi: 10.1007/s10118-013-1315-7

    26. [26]

      Ho, C. M. B.; Mishra, A.; Lin, P. T. P.; Ng, S. H.; Yeong, W. Y.; Kim, Y. J.; Yoon, Y. J. 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromol. Biosci. 2017, 17, 1600250.  doi: 10.1002/mabi.v17.4

    27. [27]

      Nie, W. C.; Dang, H. C.; Wang, X. L.; Song, F.; Wang, Y. Z. One-step enzymatic synthesis of poly(p-dioxanone-co-butylene-co-succinate) copolyesters with well-defined structure and enhanced degradability. Polymer 2017, 111, 107-114.  doi: 10.1016/j.polymer.2017.01.055

    28. [28]

      Jiang, W. L.; Li, L.; Zhang, D.; Huang, S. S.; Jing, Z.; Wu, Y. K.; Zhao, Z. H.; Zhou, S. B. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater. 2015, 25, 240-252.  doi: 10.1016/j.actbio.2015.07.023

    29. [29]

      Lco, G.; Showalter, A.; Bosze, W.; Gott, S. C.; Kim, B. S.; Rao, M. P.; Myung, N. V.; Nam, J. Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J. Mater. Chem. A 2016, 4, 2293-2304.  doi: 10.1039/C5TA10423H

    30. [30]

      Lim, D. J.; Sim, M.; Heo, Y.; Jun, H. W.; Park, H. Facile method for fabricating uniformly patterned and porous nanofibrous scaffolds for tissue engineering. Macromol. Res. 2015, 23, 1152-1158.  doi: 10.1007/s13233-015-3147-5

    31. [31]

      Yin, N.; Chen, S. Y.; Cao, Y. M.; Wang, H. P.; Wu, Q. K. Improvement in mechanical properties and biocompatibility of biosynthetic bacterial cellulose/lotus root starch composites. Chinese J. Polym. Sci. 2017, 35, 354-364.  doi: 10.1007/s10118-017-1903-z

    32. [32]

      Deuber, F.; Mousavi, S.; Federer, L.; Adlhart, C. Amphiphilic nanofiber-based aerogels for selective liquid absorption from electrospun biopolymers. Adv. Mater. Inter. 2017, 4, 1700065.  doi: 10.1002/admi.v4.12

    33. [33]

      Sadat-Shojai, M.; Khorasani, M. T.; Jamshidi, A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem. Eng. J. 2016, 289, 38-47.  doi: 10.1016/j.cej.2015.12.079

    34. [34]

      Hu, J. X.; Cai, X.; Mo, S. B.; Chen, L.; Shen, X. Y.; Tong, H. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering. Chinese J. Polym. Sci. 2015, 33, 1661-1671.  doi: 10.1007/s10118-015-1710-3

    35. [35]

      Rezk, A. L.; Unnithan, A. R.; Park, C. H.; Kim, C. S. Rational design of bone extracellular matrix mimicking tri-layered composite nanofibers for bone tissue regeneration. Chem. Eng. J. 2018, 350, 812-823.  doi: 10.1016/j.cej.2018.05.185

    36. [36]

      Montgomery, M.; Ahadian, S.; Huyer, L. D.; Lo Rito, M.; Civitarese, R. A.; Vanderlaan, R. D.; Wu, J.; Reis, L. A.; Momen, A.; Akbari, S.; Pahnke, A.; Li, R. K.; Caldarone, C. A.; Radisic, M. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 2017, 16, 1038-+.  doi: 10.1038/nmat4956

    37. [37]

      Nachlas, A. L. Y.; Li, S. Y.; Jha, R.; Singh, M.; Xu, C. H.; Davis, M. E. Human iPSC-derived mesenchymal stem cells encapsulated in PEGDA hydrogels mature into valve interstitial-like cells. Acta Biomater. 2018, 71, 235-246.  doi: 10.1016/j.actbio.2018.02.025

    38. [38]

      Merkle, V. M.; Martin, D.; Hutchinson, M.; Tran, P. L.; Behrens, A.; Hossainy, S.; Sheriff, J.; Bluestein, D.; Wu, X. Y.; Slepian, M. J. Hemocompatibility of poly(vinyl alcohol)-gelatin core-shell electrospun nanofibers: A scaffold for modulating platelet deposition and activation. ACS Appl. Mater. Interfaces 2015, 7, 8302-8312.  doi: 10.1021/acsami.5b01671

    39. [39]

      Chen, X.; Wang, J.; An, Q. Z.; Li, D. W.; Liu, P. X.; Zhu, W.; Mo, X. M. Electrospun poly(L-lactic acid-co-epsilon-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Coll. Surf. B 2015, 128, 106-114.  doi: 10.1016/j.colsurfb.2015.02.023

    40. [40]

      Anselmo, A. C.; Modery-Pawlowski, C. L.; Menegatti, S.; Kumar, S.; Vogus, D. R.; Tian, L. L.; Chen, M.; Squires, T. M.; Sen Gupta, A.; Mitragotri, S. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano. 2014, 8, 11243-11253.  doi: 10.1021/nn503732m

    41. [41]

      Wang, R.; Levi-Polyanchenko, N.; Morykwas, M.; Argenta, L.; Wagner, W. D. Novel nanofiber-based material for endovascular scaffolds. J. Bio. Mater. Res. Part A 2015, 103, 1150-1158.  doi: 10.1002/jbm.a.35267

    42. [42]

      Augustine, R.; Dan, P.; Sosnik, A.; Kalarikkal, N.; Tran, N.; Vincent, B.; Thomas, S.; Menu, P.; Rouxel, D. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano. Res. 2017, 10, 3358-3376.  doi: 10.1007/s12274-017-1549-8

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    7. [7]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    8. [8]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    9. [9]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    10. [10]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    11. [11]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    12. [12]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    13. [13]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    14. [14]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    15. [15]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    16. [16]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    17. [17]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    18. [18]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    19. [19]

      Yu-Qi CaoYing-Jie LuLi ZhangJing ZhangYin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788

    20. [20]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

Metrics
  • PDF Downloads(0)
  • Abstract views(689)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return