Citation: De-Yong Xia, Qi-Min Jiang, Wen-Yan Huang, Hong-Jun Yang, Xiao-Qiang Xue, Li Jiang, Bi-Biao Jiang. Polymerization Mechanism of Methyl Methacrylate Initiated by Ethyl Acetate/t-BuP4[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 598-603. doi: 10.1007/s10118-019-2228-x shu

Polymerization Mechanism of Methyl Methacrylate Initiated by Ethyl Acetate/t-BuP4

  • Corresponding author: Bi-Biao Jiang, jiangbibiao@cczu.edu.cn
  • Received Date: 11 December 2018
    Revised Date: 8 January 2019
    Available Online: 26 February 2019

  • The anionic polymerization of methyl methacrylate (MMA) was carried out using phosphazene base t-BuP4 and ethyl acetate (EA) as the catalyst and the initiator, respectively. Gas chromatography (GC), size exclusion chromatography (SEC) measurements, and nuclear magnetic resonance (NMR) analyses were used to reveal the polymerization mechanism and to confirm the polymer structure. The results confirmed the proposed polymerization mechanism and the polymer structure, while the initiator efficiency was low. Meanwhile, the initiation by methoxy anion coming from hydrolysis of the ester bond in MMA was also observed. As a result, there is a marked deviation between the theoretical molecular weight and the measured molecular weight, and it is essential to carry out the polymerization at excessive dosage of t-BuP4 for preparing polymers with narrow molecular weight distribution.
  • 加载中
    1. [1]

      Schwesinger, R.; Schlemper, H. Peralkylated polyaminophosphazenes-extremely strong, neutral nitrogen bases. Angew. Chem. Int. Ed. 1987, 26, 1167–1169.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Schwesinger, R.; Willaredt, J.; Schlemper, H.; Keller, M.; Schmitt, D.; Fritz, H. Novel, very strong, uncharged auxiliary bases; design and synthesis of monomeric and polymer-bound triaminoiminophosphorane bases of broadly varied steric demand. Chem. Ber. 1994, 127, 2435–2454.  doi: 10.1002/(ISSN)1099-0682

    3. [3]

      Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G. Z.; Peters, E. M.; Peters, K.; Schnering, H. G. V.; Walz, L. Extremely strong, uncharged auxiliary bases; monomeric and polymer-supported polyaminophosphazenes (P2-P5). Liebigs Ann. 1996, 7, 1055–1081.

    4. [4]

      Kaupmees, K.; Trummal, A.; Leito, I. Basicities of strong bases in water: A computational study. Croat. Chem. Acta 2014, 87, 385–395.  doi: 10.5562/cca2472

    5. [5]

      Pietzonka, T.; Seebach, D. Alkylations of (R,R)-2-t-butyl-6-methyl-1,3-dioxan-4-ones which are not possible with lithium amides may be achieved with a schwesinger P4 Base. Chem. Ber. 1991, 124, 1837–1843.  doi: 10.1002/(ISSN)1099-0682

    6. [6]

      Pietzonka, T.; Seebach, D. N-Perbenzylation of oligopeptides with P4-phosphazene base; a new protecting-group technique for modification and solubilization of peptides in apolar organic solvents. Angew. Chem. Int. Ed. 1992, 31, 1481–1482.  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Pietzonka, T.; Seebach, D. The P4-phosphazene base as part of a new metal-free initiator system for the anionic polymerization of methyl methacrylate. Angew. Chem. Int. Ed. 1993, 32, 716–717.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Isono, T.; Kamoshida, K.; Satoh, Y.; Takaoka, T.; Sato, S. I.; Satoh, T.; Kakuchi, T.; Synthesis of star- and figure-eight-shaped polyethers by t-Bu-P4-catalyzed ring-opening polymerization of butylene oxide. Macromolecules 2013, 46, 3841–3849.  doi: 10.1021/ma4006654

    9. [9]

      Song, Q. L.; Hu, S. Y.; Zhao, J. P.; Zhang, G. Z. Organocatalytic copolymerization of mixed type monomers. Chinese J. Polym. Sci. 2017, 35, 581–601.  doi: 10.1007/s10118-017-1925-6

    10. [10]

      Kondo, Y. in Superbases for organic synthesis: Guanidines, amidines, phosphazenes and related organocatalysts, John Wiley & Sons Ltd., 2009, pp. 145–185.

    11. [11]

      Boileau, S.; Illy, N. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters. Prog. Polym. Sci. 2011, 36, 1132–1151.  doi: 10.1016/j.progpolymsci.2011.05.005

    12. [12]

      Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 2016, 56, 64–115.  doi: 10.1016/j.progpolymsci.2015.12.001

    13. [13]

      Hu, S. Y.; Zhao, J. P.; Zhang, G. Z.; Schlaad, H. Macromolecular architectures through organocatalysis. Prog. Polym. Sci. 2017, 74, 34–77.  doi: 10.1016/j.progpolymsci.2017.07.002

    14. [14]

      Hong, M.; Chen, E. Y. X. Towards truly sustainable polymers: A metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 2016, 55, 4188–4193.  doi: 10.1002/anie.201601092

    15. [15]

      Hong, M.; Tang, X. Y.; Newell, B. S.; Chen, E. Y. X. " Nonstrained” γ-butyrolactone-based copolyesters: Copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules 2017, 50, 8469–8479.  doi: 10.1021/acs.macromol.7b02174

    16. [16]

      Song, Q. L.; Xia, Y. N.; Hu, S. Y.; Zhao, J. P.; Zhang, G. Z. Tuning the crystallinity and degradability of PCL by organocatalytic copolymerization with δ-hexalactone. Polymer 2016, 102, 248–255.  doi: 10.1016/j.polymer.2016.09.026

    17. [17]

      Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 2007, 129, 12610–12611.  doi: 10.1021/ja074131c

    18. [18]

      Liu, J. J.; Chen, C.; Li, Z. J.; Wu, W. Z.; Zhi, X.; Zhang, Q. G.; Wu, H.; Wang, X.; Cui, S. D.; Guo, K. A squaramide and tertiary amine: An excellent hydrogen-bonding pair organocatalyst for living polymerization. Polym. Chem. 2015, 6, 3754–3757.  doi: 10.1039/C5PY00508F

    19. [19]

      Liu, S. F.; Ren, C. L.; Zhao, N.; Shen, Y.; Li, Z. B. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun. 2018, 39, 1800485.  doi: 10.1002/marc.v39.24

    20. [20]

      Li, Y. X.; Zhao, N.; Wei, C. Z.; Sun, A. B.; Liu, S. F.; Li, Z. B. Binary organocatalytic system for ring-opening polymerization of ε-caprolactone and δ-valerolactone: Synergetic effects for enhanced selectivity. Eur. Polym. J. 2019, 111, 11–19.  doi: 10.1016/j.eurpolymj.2018.12.012

    21. [21]

      Liu, S. F.; Li, H. K.; Zhao, N.; Li, Z. B. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett. 2018, 7, 624–628.  doi: 10.1021/acsmacrolett.8b00353

    22. [22]

      Dentzer, L.; Bray, C.; Noinville, S.; Illy, N.; Guégan, P. Phosphazene-promoted metal-free ring-opening polymerization of 1,2-epoxybutane initiated by secondary amides. Macromolecules 2015, 48, 7755–7764.  doi: 10.1021/acs.macromol.5b01638

    23. [23]

      Hassouna, L.; Illy, N.; Guégan, P. Phosphazene/triisobutylaluminum-promoted anionic ring-opening polymerization of 1,2-epoxybutane initiated by secondary carbamates. Polym. Chem. 2017, 8, 4005–4013.  doi: 10.1039/C7PY00675F

    24. [24]

      Zhang, H. X.; Hu, S. Y.; Zhao, J. P.; Zhang, G. Z. Phosphazene-catalyzed alternating copolymerization of dihydrocoumarin and ethylene oxide: Weaker is better. Macromolecules 2017, 50, 4198–4205.  doi: 10.1021/acs.macromol.7b00599

    25. [25]

      Zhang, J.; Liu, Q.; Ren, H. J.; Zhang, N. J.; Li, P. F.; Yang, K. Phosphoniums as catalysts for metal-free polymerization: Synthesis of well-defined poly(propylene oxide). J. Mol. Struc. 2017, 1148, 421–428.  doi: 10.1016/j.molstruc.2017.05.094

    26. [26]

      Xia, Y. N.; Zhao, J. P. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. Polymer 2018, 143, 343–361.  doi: 10.1016/j.polymer.2018.03.047

    27. [27]

      Eßwein, B.; Molenberg, A.; Möller, M. Use of polyiminophosphazene bases for ring-opening polymerizations. Macromol. Symp. 1996.107. 331–340.  doi: 10.1002/masy.v107.1

    28. [28]

      Molenberg, A.; Möller, M. A fast catalyst system for the ring-opening polymerization of cyclosiloxanes. Macromol. Rapid Commun. 1995, 16, 449–453.  doi: 10.1002/marc.1995.030160606

    29. [29]

      Pibre, G.; Chaumont, P.; Fleury, E.; Cassagnau, P. Ring-opening polymerization of decamethylcyclopentasiloxane initiated by a superbase: Kinetics and rheology. Polymer 2008, 49, 234–240.  doi: 10.1016/j.polymer.2007.11.017

    30. [30]

      Dyke, M. E. V.; Clarson, S. J. Reaction kinetics for the anionic ring-opening polymerization of tetraphenyltetramethylcyclotetrasiloxane using a fast initiator system. J. Inorg. Organomet. Polym. 1998, 8, 111–117.  doi: 10.1023/A:1022487906770

    31. [31]

      Samuel, C.; Chalamet, Y.; Boisson, F.; Majesté, J.; Becquart, F.; Fleury, E. Highly efficient metal-free organic catalysts to design new environmentally friendly starch-based blends. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 493–503.  doi: 10.1002/pola.27022

    32. [32]

      Brignou, P.; Gil, M. P.; Casagrande, O.; Carpentier, J. F.; Guillaume, S. M. Polycarbonates derived from green acids: Ring-opening polymerization of seven-membered cyclic carbonates. Macromolecules 2010, 43, 8007–8017.  doi: 10.1021/ma1014098

    33. [33]

      Chen, J. L.; Li, M. S.; He, W. J.; Tao, Y. H.; Wang, X. H. Facile organocatalyzed synthesis of poly(ε-lysine) under mild conditions. Macromolecules 2017, 50, 9128–9134.  doi: 10.1021/acs.macromol.7b02331

    34. [34]

      Jr, W. M.; Campbell, G. C.; Davidson, F. Poly(aminophosphazene)s and protophosphatranes mimic classical strong anionic base catalysts in the anionic ring-opening polymerization of lactams. Macromolecules 1996, 29, 6475–6480.  doi: 10.1021/ma960659i

    35. [35]

      Börner, H. G.; Heitz, W. Anionic polymerization of butyl acrylate with metal free initiator systems containing [1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-phosphor-anylidenamino]-2λ5,4λ55-catenadi(phosphazene)] base (P4-tert-butyl-phosphazene base). Macromol. Chem. Phys. 1998, 199, 1815–1820.

    36. [36]

      Kakuchi, T.; Chen, Y.; Kitakado, J.; Mori, K.; Fuchise, K.; Satoh, T. Organic superbase as an efficient catalyst for group transfer polymerization of methyl methacrylate. Macromolecules 2011, 44, 4641–4647.  doi: 10.1021/ma200720p

    37. [37]

      Weideman, I.; Pfukwa, R.; Klumperman, B. Phosphazene base promoted anionic polymerization of n-butyraldehyde. Eur. Polym. J. 2017, 93, 97–102.  doi: 10.1016/j.eurpolymj.2017.05.034

    38. [38]

      Zhao, N.; Ren, C. L.; Li, H. K.; Li, Y. X.; Liu, S. F.; Li, Z. B. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. 2017, 56, 12987–12990.  doi: 10.1002/anie.201707122

    39. [39]

      Li, H. K.; Zhao, N.; Ren, C. L.; Liu, S. F.; Li, Z. B. Synthesis of linear and star poly(ε-caprolactone) with controlled and high molecular weights via cyclic trimeric phosphazene base catalyzed ring-opening polymerization. Polym. Chem. 2017, 8, 7369–7374.  doi: 10.1039/C7PY01673E

    40. [40]

      Wang, J.; Li, B. X.; Xin, D. H.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Superbase catalyzed regio-selective polyhydroalkoxylation of alkynes: A facile route towards functional poly(vinyl ether)s. Polym. Chem. 2017, 8, 2713–2722.  doi: 10.1039/C7PY00363C

    41. [41]

      Fevre, M.; Vignolle, J.; Heroguez, V.; Taton, D.; Tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) as potent organocatalyst for group transfer polymerization of alkyl (meth)acrylates. Macromolecules 2012; 45, 7711–7718.  doi: 10.1021/ma301412z

    42. [42]

      Wang, D.; Hadjichristidis, N. Allyl borates: A novel class of polyhomologation initiators. Chem. Commun. 2017, 53, 1196–1199.  doi: 10.1039/C6CC09047H

    43. [43]

      Lascelles, S. F.; Malet, F.; Mayada, R.; Billingham, N. C.; Armes, S. P. Latex syntheses using novel tertiary amine methacrylate-based macromonomers prepared by oxyanionic polymerization. Macromolecules 1999, 32, 2462–2471.  doi: 10.1021/ma981967e

    44. [44]

      Yang, H. J.; Xu, J. B.; Pispas, S.; Zhang, G. Hybrid copolymerization of ε-caprolactone and methyl methacrylate. Macromolecules 2012, 45, 3312–3317.  doi: 10.1021/ma300291q

    45. [45]

      Yang, H. J.; Bai, T.; Xue, X. Q.; Huang, W. Y.; Chen, J. H.; Qian, X. L.; Zhang, G. Z.; Jiang, B. B. A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Adv. 2015, 5, 60401–60408.  doi: 10.1039/C5RA09851C

    46. [46]

      Yang, H. J.; Bai, T.; Xue, X. Q.; Huang, W. Y.; Chen, J. H.; Qian, X. L.; Zhang, G. Z.; Jiang, B. B. A simple route to vinyl-functionalized hyperbranched polymers: Self-condensing anionic copolymerization of allyl methacrylate and hydroxyethyl methacrylate. Polymer 2015, 72, 63–68.  doi: 10.1016/j.polymer.2015.06.048

    47. [47]

      Zhang, Y. T.; Schmitt, M.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination. J. Am. Chem. Soc. 2013, 135, 17925–17942.  doi: 10.1021/ja4088677

    48. [48]

      Odian, G. in Principles of Polymerization, 4th Ed., John Wiley & Sons, Hoboken, NJ, USA, 2004.

  • 加载中
    1. [1]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    4. [4]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    5. [5]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    6. [6]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    7. [7]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    8. [8]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    9. [9]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    10. [10]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    11. [11]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    12. [12]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    13. [13]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    14. [14]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    18. [18]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    19. [19]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    20. [20]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

Metrics
  • PDF Downloads(0)
  • Abstract views(767)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return