Citation: Lei Zhang, Bin Zhang, Haiyan Ma. Ethylene-bridged Indenyl-fluorenyl Metallocene Complexes for Efficient Preparation of Allyl-terminated Propylene Oligomers and Polymers via Selective β-Methyl Transfer[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 578-590. doi: 10.1007/s10118-019-2224-1 shu

Ethylene-bridged Indenyl-fluorenyl Metallocene Complexes for Efficient Preparation of Allyl-terminated Propylene Oligomers and Polymers via Selective β-Methyl Transfer

  • Corresponding author: Haiyan Ma, haiyanma@ecust.edu.cn
  • Received Date: 7 December 2018
    Revised Date: 10 January 2019
    Available Online: 1 March 2019

  • Four C1-symmetric ansa-metallocene complexes, C2H4(Ind)(2,7-tBu2-Flu)ZrCl2 (4), C2H4(3-Bn-Ind)(2,7-tBu2-Flu)ZrCl2 (5), C2H4(3-Bn-Ind)(3,6-tBu2-Flu)ZrCl2 (6), and C2H4(3-Bn-Ind)(2,7-tBu2-Flu)HfCl2 (7), were synthesized and characterized. The structures of complexes 4, 5, and 7 were further determined via X-ray diffraction studies. Upon activation with modified methylaluminoxane (MMAO) or AliBu3/[Ph3C][B(C6F5)4] (TIBA/TrB), most of these complexes showed high efficiency in catalyzing propylene oligomerization/polymerization to afford products dominantly with allyl terminals via selective β-methyl transfer (β-Me transfer). The introduction of 3-benzyl group on the indenyl ring of the complexes was found to be crucial in enabling highly selective β-Me transfer during the polymerization process, leading to selectivities up to 89% obtained by zirconocene complexes 5 and 6, and up to 91% obtained by hafnocene complex 7. Detailed chain-end analysis by 1H-NMR, 13C-NMR, and MALDI-TOF mass spectroscopy revealed that the allyl chain-ends of the polymeric products resulted from a selective β-Me transfer process after two successively primary insertions of the monomer. Further studies concerning the dependence of chain release selectivity as well as the molecular weight of products on monomer concentration suggested that both β-Me transfer (major) and β-hydrogen transfer (β-H transfer) (minor) mediated by 5/MMAO and 6/MMAO systems may mainly operate in a bimolecular pathway.
  • 加载中
    1. [1]

      Resconi, L.; Camurati, I.; Sudmeijer, O. Chain transfer reactions in propylene polymerization with zirconocene catalysts. Top. Catal. 1999, 7, 145–163.  doi: 10.1023/A:1019115801193

    2. [2]

      Resconi, L.; Piemontesi, F.; Franciscono, G.; Abis, L.; Fiorani, T. Olefin polymerization at bis(pentamethylcyclopentadienyl)zirconium and hafnium centers: Chain-transfer mechanisms. J. Am. Chem. Soc. 1992, 114, 1025–1032.  doi: 10.1021/ja00029a035

    3. [3]

      Resconi, L.; Jones, R. L.; Rheingold, A. L.; Yap, G. P. A. High-molecular-weight atactic polypropylene from metallocene catalysts. 1. Me2Si(9-Flu)2ZrX2 (X = Cl, Me). Organometallics 1996, 15, 998–1005.  doi: 10.1021/om950197h

    4. [4]

      Resconi, L.; Piemontesi, F.; Camurati, I.; Sudmeijer, O.; Nifant’ev, I. E.; Ivchenko, P. V.; Kuz’mina, L. G. Highly regiospecific zirconocene catalysts for the isospecific polymerization of propylene. J. Am. Chem. Soc. 1998, 120, 2308–2321.  doi: 10.1021/ja973160s

    5. [5]

      Schöbel, A.; Lanzinger, D.; Rieger, B. Polymerization behavior of C1-symmetric metallocenes (M = Zr, Hf): From ultrahigh molecular weight elastic polypropylene to useful macromonomers. Organometallics 2013, 32, 427–437.  doi: 10.1021/om300781a

    6. [6]

      Markel, E. J.; Weng, W.; Peacock, A. J.; Dekmezian, A. H. Metallocene-based branch−block thermoplastic elastomers. Macromolecules 2000, 33, 8541–8548.  doi: 10.1021/ma001087b

    7. [7]

      Weng, W.; Markel, E. J.; Peacock, A. J.; Dekmezian, A. H. Synthesis of long-chain branched propylene polymers via macromonomer incorporation. Macromol. Rapid Commun. 2001, 22, 1488–1492.  doi: 10.1002/1521-3927(20011201)22:18<1488::AID-MARC1488>3.0.CO;2-I

    8. [8]

      Ohtaki, H.; Deplace, F.; Vo, G. D.; LaPointe, A. M.; Shimizu, F.; Sugano, T.; Kramer, E. J.; Fredrickson, G. H.; Coates, G. W. Allyl-terminated polypropylene macromonomers: A route to polyolefin elastomers with excellent elastic behavior. Macromolecules 2015, 48, 7489–7494.  doi: 10.1021/acs.macromol.5b01975

    9. [9]

      Eshuis, J. J. W.; Tan, Y. Y.; Teuben, J. H.; Renkema, J. Catalytic olefin oligomerization and polymerization with cationic group IV metal complexes [Cp*2MMe(THT)]+[BPh4], M = Ti, Zr and Hf. J. Mol. Catal. 1990, 62, 277–287.  doi: 10.1016/0304-5102(90)85223-5

    10. [10]

      Weng, W.; Markel, E. J.; Dekmezian, A. H. Synthesis of vinyl-terminated isotactic poly(propylene). Macromol. Rapid Commun. 2000, 21, 1103–1107.  doi: 10.1002/(ISSN)1521-3927

    11. [11]

      Janiak, C.; Lange, K. C. H.; Marquardt, P. Alkyl-substituted cyclopentadienyl- and phospholyl-zirconium/MAO catalysts for propene and 1-hexene oligomerization. J. Mol. Catal. A: Chem. 2002, 180, 43–58.  doi: 10.1016/S1381-1169(01)00407-1

    12. [12]

      Bader, M.; Marquet, N.; Kirillov, E.; Roisnel, T.; Razavi, A.; Lhost, A.; Carpentier, J.-F. Old and new C1-symmetric Group 4 metallocenes {(R1R2C)-(R2’R3’R6’R7’-Flu) (3-R3-5-R4-C5H2)}ZrCl2: From highly isotactic polypropylenes to vinyl end-capped isotactic-enriched oligomers. Organometallics 2012, 31, 8375–8387.  doi: 10.1021/om300957k

    13. [13]

      Suzuki, Y.; Yasumoto, T.; Mashima, K.; Okuda, J. Hafnocene catalysts for selective propylene oligomerization: efficient synthesis of 4-methyl-1-pentene by β-methyl transfer. J. Am. Chem. Soc. 2006, 128, 13017–13025.  doi: 10.1021/ja063717g

    14. [14]

      Watson, P. L.; Roe, D. C. β-Alkyl transfer in a lanthanide model for chain termination. J. Am. Chem. Soc. 1982, 104, 6471–6473.  doi: 10.1021/ja00387a064

    15. [15]

      Hajela, S.; Bercaw, J. E. Competitive chain transfer by β-hydrogen and β-methyl elimination for a model Ziegler-Natta olefin polymerization system [Me2Si(η5-C5Me4)2]Sc{CH2CH(CH3)2}(PMe3). Organometallics 1994, 13, 1147–1154.  doi: 10.1021/om00016a018

    16. [16]

      Wang, Y.; Huang, W.; Ma, H.; Huang, J. Ethylene-bridged C1-symmetric ansa-(3-R-Indenyl)(fluorenyl) zirconocene complexes for propylene dimerization or polymerization: the effect of R group. Polyhedron 2014, 76, 81–93.  doi: 10.1016/j.poly.2014.03.019

    17. [17]

      Huang, W.; Wang, Y.; Ma, H.; Huang, J. Highly selective propylene dimerization catalyzed by C1-symmetric zirconocene complexes. Appl. Organomet. Chem. 2014, 10, 413–422.

    18. [18]

      Aitola, E.; Surakka, M.; Repo, T.; Linnolahti, M.; Lappalainen, K.; Kervinen, K.; Klinga, M.; Pakkanen, T.; Leskelä, M. Polymerization of ethene with zirconocene catalysts: an experimental and quantum chemical study of the influence of para-substituent in benzyl in bis {η5-(1-benzyl)indenyl}zirconium dichlorides. J. Organomet. Chem. 2005, 690, 773–783.  doi: 10.1016/j.jorganchem.2004.09.089

    19. [19]

      Rieger, B.; Jany, G.; Fawzi, R.; Steimann, M. Unsymmetric ansa-zirconocene complexes with chiral ethylene bridges: influence of bridge conformation and monomer concentration on the stereoselectivity of the propene polymerization reaction. Organometallics 1994, 13, 647–653.  doi: 10.1021/om00014a041

    20. [20]

      Linnolahti, M.; Pakkanen, T. A.; Leino, R.; Luttikhedde, H. J. G.; Wilén, C.-E.; Näsman, J. H. Conformational preferences of racemic ethylene-bridged bis(indenyl)-type zirconocenes: An ab initio Hartree-Fock study. Eur. J. Inorg. Chem. 2001, 2033–2040.

    21. [21]

      Leino, R.; Luttikhedde, H. J. G.; Lehtonen, A.; Ekholm, P.; Näsman, J. H. Synthesis and characterization of ethylene-bridged 1-tert-butyldimethylsiloxy-substituted bis(indenyl) and bis(tetrahydroindenyl)zirconium dichlorides. J. Organomet. Chem. 1998, 558, 181–188.  doi: 10.1016/S0022-328X(98)00375-1

    22. [22]

      Doerrer, L.; Green, M. L. H.; Powell, A. K.; Häußinger, D.; Saßmannshausen, J. Evidence for cationic group 4 zirconocene complexes with intramolecular phenyl coordination. J. Chem. Soc. Dalton Trans. 1999, 2111–2118.

    23. [23]

      Bochmann, M.; Green, M. L. H.; Powell, A. K.; Saßmannshausen, J.; Triller, M. U.; Wocadlo, S. Cationic zirconocene complexes with benzyl and Si(SiMe3)3 substituted cyclopentadienyl ligands. J. Chem. Soc. Dalton Trans. 1999, 43–50.

    24. [24]

      Licht, A. I.; Schneider, K. J.; Alt, H. G. CH-Aktivierungsreaktionen an unverbrückten und verbrückten Zirconocenkomplexen zur Darstellung von Metallacyclen und deren Verwendung in der katalytischen Ethylenpolymerisation. J. Organomet. Chem. 2003, 688, 254–272.  doi: 10.1016/j.jorganchem.2003.08.045

    25. [25]

      Kirillov, E.; Marquet, N.; Razavi, A.; Belia, V.; Hampel, F.; Roisnel, T.; Gladysz, J. A.; Carpentier, J.-F. New C1-symmetric Ph2C-bridged multisubstituted ansa-zirconocenes for highly isospecific propylene polymerization: synthetic approach via activated fulvenes. Organometallic 2010, 29, 5073–5082.  doi: 10.1021/om100289y

    26. [26]

      Deckers, P.; Hessen, B.; Teuben, J. Switching a catalyst system from ethene polymerization to ethene trimerization with a hemilabile ancillary ligand. Angew. Chem. Int. Ed. 2001, 40, 2516–2519.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Deckers, P.; Hessen, B.; Teuben, J. Catalytic Trimerization of ethene with highly active cyclopentadienyl−arene titanium catalysts. Organometallics 2002, 21, 5122–5135.  doi: 10.1021/om020765a

    28. [28]

      Zhang, Y.; Wang, C.; Wu, T.; Ma, H.; Huang, J. Highly selective ethylene trimerization catalyzed by half-sandwich indenyl titanium complexes with pendant arene groups and MAO. J. Mol. Catal. A: Chem. 2013, 373, 85–95.  doi: 10.1016/j.molcata.2013.03.005

    29. [29]

      Razavi, A.; Thewalt, U. Preparation and crystal structures of the complexes (η5-C5H3TMS–CMe2η5-C13H8)MCl2 and [3,6-ditButC13H6-SiMe2-NtBu]MCl2 (M=Hf, Zr or Ti): Mechanistic aspects of the catalytic formation of a isotactic–syndiotactic stereoblock-type polypropylene. J. Organomet. Chem. 2001, 621, 267–276, and references therein.  doi: 10.1016/S0022-328X(00)00863-9

    30. [30]

      Yang, M.; Li, Q.; Li, X. L.; Hu, B. W.; Dong, X. F.; Qu, J. Y.; Liu, B. Y.; Wang, X.; Hao, X. Y. Tandem catalysis of one metallocene catalyst combined with two different cocatalysts for preparing branched polyethylene. Chinese J. Polym. Sci. 2016, 34, 298–306.  doi: 10.1007/s10118-016-1737-0

    31. [31]

      Busico, V.; Cipullo, R.; Pellecchia, R.; Talarico, G.; Razavi, A. Hafnocenes and MAO: Beware of trimethylaluminum. Macromolecules 2009, 42, 1789–1791.  doi: 10.1021/ma900066n

    32. [32]

      Cobzaru, C.; Hild, S.; Boger, A.; Troll, C.; Rieger, B. " Dual-side” catalysts for high and ultrahigh molecular weight homopolypropylene elastomers and plastomers. Coord. Chem. Rev. 2006, 250, 189–211.  doi: 10.1016/j.ccr.2005.06.007

    33. [33]

      Resconi, L.; Piemontesi, F.; Camurati, I.; Balboni, D.; Sironi, A.; Moret, M.; Rychlicki, H.; Zeigler, R. Diastereoselective synthesis, molecular structure, and solution dynamics of meso- and rac-[ethylenebis(4,7-dimethyl-η5-1-indenyl)]zirconium dichloride isomers and chain transfer reactions in propene polymerization with the rac isomer. Organometallics 1996, 15, 5046–5059.  doi: 10.1021/om9604233

    34. [34]

      Busico, V.; Brita, D.; Caporaso, L.; Cipullo, R.; Vacatello, M. Interfering effects of growing chain epimerization on metallocene-catalyzed isotactic propene polymerization. Macromolecules 1997, 30, 3971–3977.  doi: 10.1021/ma970042g

    35. [35]

      Miller, S. A.; Bercaw, J. E. Mechanism of isotactic polypropylene formation with C1-symmetric metallocene catalysts. Organometallics 2006, 25, 3576–3592.  doi: 10.1021/om050841k

    36. [36]

      Kleinschmidt, R.; Reffke, M.; Fink, G. Investigation of the microstructure of poly(propylene) in dependence of the polymerization temperature for the systems iPr[3-RCpFlu]ZrCl2/MAO, with R = H, Me, Et, iPr, tBu, and iPr[IndFlu]ZrCl2/MAO. Macromol. Rapid Commum. 1999, 20, 284–288.  doi: 10.1002/(ISSN)1521-3927

    37. [37]

      Yang, P.; Baird, M. C. Mechanistic study of β-methyl and β-hydrogen elimination in the zirconocene compounds Cp'2ZrR(μ-CH3)B(C6F5)3 (Cp' = Cp, Cp*; R = CH2CMe3, CH2CHMe2). Organometallics 2005, 24, 6005–6012.  doi: 10.1021/om0504710

    38. [38]

      Stehling, U.; Diebold, J.; Kirsten, R.; Röll, W.; Brintzinger, H. H.; Jüngling, S.; Mülhaupt, R.; Langhauser, F. ansa-Zirconocene polymerization catalysts with anelated ring ligands—effects on catalytic activity and polymer chain length. Organometallics 1994, 13, 964–970.  doi: 10.1021/om00015a033

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    5. [5]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    6. [6]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    7. [7]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    8. [8]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    9. [9]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    10. [10]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    11. [11]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    12. [12]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    13. [13]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    14. [14]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    15. [15]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    16. [16]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    17. [17]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    18. [18]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    19. [19]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    20. [20]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

Metrics
  • PDF Downloads(0)
  • Abstract views(751)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return