Citation: Xiao-Qiu Dou, Chang-Li Zhao, Nabila Mehwish, Ping Li, Chuan-Liang Feng, Holger Schönherr. Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4′-Azopyridine for Controllable Dye Release[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 437-443. doi: 10.1007/s10118-019-2223-2 shu

Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4′-Azopyridine for Controllable Dye Release

  • Photoresponsive hydrogels have been attractive because they can provide precise spatial and temporal control for molecule release, whereas the conventional preparation of photoresponsive hydrogels generally involves complex chemical synthesis steps or specific conditions which limits their practical applications. Herein, a new photoresponsive hydrogel is facilely prepared via co-assembly of two simple molecules, Fmoc-Phe-OH and Azp, without chemical synthesis. The co-assembly mechanism, morphology, and photoresponsiveness of (Fmoc-Phe-OH)-Azp hydrogel are investigated by circular dichroism (CD), ultraviolet-visible (UV-Vis), fluorescence, 1H nuclear magnetic resonance (1H-NMR), attenuated total internal reflection Fourier transform Infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). Furthermore, the enhanced release of encapsulated sulforhodamine B (SRB) dye molecules can be achieved via UV light irradiation. The enhanced dye release amount can be controlled by manipulating photoirradiation time. This study provides a facile way to prepare photoresponsive hydrogel which holds great potential for controllable drug release.
  • 加载中
    1. [1]

      Dou, X. Q.; Feng, C. L. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Adv. Mater. 2017, 29, 1604062.  doi: 10.1002/adma.201604062

    2. [2]

      Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165-13307.  doi: 10.1021/acs.chemrev.5b00299

    3. [3]

      Wang, Y. C.; Shim, M. S.; Levinson, N. S.; Sung, H. W.; Xia, Y. N. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater. 2014, 24, 4206-4220.  doi: 10.1002/adfm.v24.27

    4. [4]

      Zhang, W. M.; Zhang, J.; Qiao, Z.; Yin, J. Functionally oriented tumor microenvironment responsive polymeric nanoassembly: engineering and applications. Chinese J. Polym. Sci. 2018, 36, 273-287.  doi: 10.1007/s10118-018-2035-9

    5. [5]

      Samai, S.; Sapsanis, C.; Patil, S. P.; Ezzeddine, A.; Moosa, B. A.; Omran, H.; Emwas, A. H.; Salama, K. N.; Khashab, N. M. A light responsive two-component supramolecular hydrogel: A sensitive platform for the fabrication of humidity sensors, Soft Matter 2016, 12, 2842-2845  doi: 10.1039/c6sm00272b

    6. [6]

      He, M. T.; Li, J. B.; Tan, S.; Wang, R. Z.; Zhang, Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc. 2013, 135, 18718-18721.  doi: 10.1021/ja409000b

    7. [7]

      Chen, Q.; Lv, Y. X.; Zhang, D. Q.; Zhang, G. X.; Liu, C. Y.; Zhu, D. B. Cysteine and pH-responsive hydrogel based on a saccharide derivative with an aldehyde group. Langmuir 2010, 26, 3165-3168.  doi: 10.1021/la903102z

    8. [8]

      Sarkar, K.; Dastidar, P. Supramolecular hydrogel derived from a c3-symmetric boronic acid derivative for stimuli-responsive release of insulin and doxorubicin. Langmuir 2018, 34, 685-692.  doi: 10.1021/acs.langmuir.7b03326

    9. [9]

      Wang, F.; Feng, C. L. Metal-ion-mediated supramolecular chirality of L-phenylalanine based hydrogels. Angew. Chem. Int. Ed. 2018, 57, 5655-5659.  doi: 10.1002/anie.201800251

    10. [10]

      Cheng, C.; Tang, M. C.; Wu, C. S.; Simon, T.; Ko, F. H. New synthesis route of hydrogel through a bioinspired supramolecular approach: Gelatin, binding interaction, and in vitro dressing. ACS Appl. Mater. Interfaces 2015, 7, 19306-19315.  doi: 10.1021/acsami.5b05360

    11. [11]

      Kuddushi, M.; Patel, N. K.; Rajputt, S.; Shah, A.; EI Seoud, O. A.; Malek, N. I. Thermo-switchable de novo ionic liquid-based gelators with dye absorbing and drug encapsulating characteristics. ACS Omega 2018, 3, 12068-12078.  doi: 10.1021/acsomega.8b01984

    12. [12]

      Shankar, B. V.; Patnaik, A. A New pH and thermo-responsive chiral hydrogel for stimulated release. J. Phys. Chem. B 2007, 111, 9294-9300.  doi: 10.1021/jp073275a

    13. [13]

      Lu, X. J.; Yang, X. Y.; Meng, Y.; Li, S. Z. Temperature and pH dually-responsive poly(β-amino ester) nanoparticles for drug delivery. Chinese J. Poly. Sci. 2017, 35, 534-546.  doi: 10.1007/s10118-017-1916-7

    14. [14]

      Ji, W.; Liu, G. F.; Xu, M. X.; Feng, C. L. A redox-responsive supramolecular hydrogel for controllable dye release. Macromol. Chem. Phys. 2015, 216, 1945-1951.  doi: 10.1002/macp.201500210

    15. [15]

      Wojciechowski, J. P.; Martin, A. D.; Thordarson, P. Kinetically controlled lifetimes in redox-responsive transient supramolecular hydrogels. J. Am. Chem. Soc. 2018, 140, 2869-2874.  doi: 10.1021/jacs.7b12198

    16. [16]

      Yao, L.; Krause, S. Electromechanical responses of strong acid polymer gels in DC electric fields. Macromolecules 2003, 36, 2055-2065.  doi: 10.1021/ma021326q

    17. [17]

      Ji, W.; Liu, G. F.; Wang, F.; Zhu, Z.; Feng, C. L. Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chem. Commun. 2016, 52, 12574-12577.  doi: 10.1039/C6CC05707A

    18. [18]

      Ji, W.; Qin, M. G.; Feng, C. L. Photoresponsive coumarin-based supramolecular hydrogel for controllable dye release. Macromol. Chem. Phys. 2018, 219, 1700398.  doi: 10.1002/macp.v219.2

    19. [19]

      Roth-Konforti, M. E.; Comune, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Shabat, D.; Adler-Abramovich, L. UV Light-responsive peptide-based supramolecular hydrogel for controlled drug delivery. Macromol. Rapid Commun. 2018, 1800588.

    20. [20]

      Yang, Q. F.; Wang, P.; Zhao, C. Z.; Wang, W. Q.; Yang, J. F.; Liu, Q. Light-switchable self-healing hydrogel based on host-guest macro-crosslinking. Macromol. Rapid Commun. 2017, 38, 1600741.  doi: 10.1002/marc.v38.6

    21. [21]

      Liu, G. F.; Ji, W.; Wang, W. L.; Feng, C. L. Azobenzene derivatives as 3d scaffolds for photoguiding cell adhesion and release. ACS Appl. Mater. Interfaces 2015, 7, 301-307.  doi: 10.1021/am506202s

    22. [22]

      Wang, W.; Gao, F.; Yao, Y.; Lin, S. L. Directional photo-manipulation of self-assembly patterned microstructures. Chinese J. Polym. Sci. 2018, 36, 297-305.  doi: 10.1007/s10118-018-2087-x

    23. [23]

      Muraoka, T.; Koh, C. Y.; Cui, H. G.; Stupp, S. I. Light-triggered bioactivity in three dimensions. Angew. Chem. Int. Ed. 2009, 48, 5946-5949.  doi: 10.1002/anie.v48:32

    24. [24]

      Komatsu, H.; Tsukiji, S.; Ikeda, M.; Hamachi, I. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells. Chem. Asian J. 2001, 6, 2368-2375.

    25. [25]

      Yang, R. M.; Peng, S. H.; Wan, W. B.; Hughes, T. C. Azobenzene based multistimuli responsive supramolecular hydrogels. J. Mater. Chem. C. 2014, 2, 9122-9131.  doi: 10.1039/C4TC01649A

    26. [26]

      Wang, D. S.; Wagner, M.; Butt, H. J.; Wu, S. Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue. Soft Matter, 2015, 11, 7656-7662.  doi: 10.1039/C5SM01888A

    27. [27]

      Dou, X. Q.; Li, P.; Zhang, D.; Feng, C. L. C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. Soft Matter 2012, 8, 3231-3238.  doi: 10.1039/c2sm06927j

    28. [28]

      Dou, X. Q.; Zhang, D.; Feng, C. L.; Jiang, L. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano 2015, 9, 10664-10672.  doi: 10.1021/acsnano.5b04231

    29. [29]

      Liu, J. Y.; Yuan, F.; Ma, X. Y.; Auphedeous, D. Y.; Zhao, C. L.; Liu, C. T.; Shen, C. Y.; Feng, C. L. The cooperative effect of both molecular and supramolecular chirality on cell adhesion. Angew. Chem. Ind. Ed. 2018, 57, 6475-6479.  doi: 10.1002/anie.v57.22

    30. [30]

      Liu, G. F.; Zhang, D.; Feng, C. L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. Angew. Chem. Int. Ed. 2014, 53, 7789-7793.  doi: 10.1002/anie.201403249

    31. [31]

      Huang, S.; Chen, Y. X.; Ma, S. D.; Yu, H. F. Hierarchical self-assembly in liquid-crystalline block copolymers enabled by chirality transfer. Angew. Chem. Int. Ed. 2018, 57, 12524-12528.  doi: 10.1002/anie.201807379

    32. [32]

      Ryan, D. M.; Doran, T. M.; Anderson, S. B.; Nilsson, B. L. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Langmuir 2011, 27, 4029-4039.  doi: 10.1021/la1048375

    33. [33]

      Zhang, P.; Huang, Y. X.; Kwon, Y. T.; Li, S. PEGylated Fmoc-amino acid conjugates as effective nanocarriers for improved drug delivery. Mol. Pharmaceutics 2015, 12, 1680-1690.  doi: 10.1021/acs.molpharmaceut.5b00157

    34. [34]

      Dou, X. Q.; Li, P.; Lu, S. Q.; Tian, X. B.; Tang, Y. T.; Mercer-Chalmers, J. D.; Feng, C. L.; Zhang, D. Highly directional co-assembly of 2,6-pyridinedicarboxylic acid and 4-hydroxypyridine based on low molecular weight gelators. J. Mol. Liq. 2013, 180, 129-134.  doi: 10.1016/j.molliq.2013.01.005

    35. [35]

      Zhang, H. B.; Zhao, R.; Jackson, J. K.; Chiao, M.; Yu, H. F. Janus ultrathin film form multi-level self-assembly at air-water interfaces. Chem. Commun. 2014, 50, 14843-14846.  doi: 10.1039/C4CC06798C

    36. [36]

      Liu, H.; Kobayashi, T.; Yu, H. F. Easy fabrication and morphology control of supramolecular liquid-crystalline polymer microparticles. Macromol. Rapid Commun. 2011, 32, 378-383.  doi: 10.1002/marc.v32.4

    37. [37]

      Yu, H. F.; Liu, H.; Kobayashi, T. Fabrication and photoresponse of supramolecualr liquid-crystalline microparticles. ACS Appl. Mater. Interfaces 2011, 3, 1333-1340.  doi: 10.1021/am2001289

    38. [38]

      Chakraborty, P.; Mondal, S.; Khara, S.; Bairi, P.; Nandi, A. K. Integration of poly(ethylene glycol) in N-fluorenylmethoxycarbonyl-L-tryptophan hydrogel influencing mechanical, thixotropic, and release properties. J. Phys. Chem. B 2015, 119, 5933-5944.  doi: 10.1021/acs.jpcb.5b02424

    39. [39]

      Liu, G. F.; Sheng, J. H.; Teo, W. L.; Yang, G. B.; Wu, H. W.; Li, Y. X.; Zhao, Y. L. Control on dimensions and supramolecular chirality of self-assemblies through light and metal ions. J. Am. Chem. Soc. 2018, 140, 16275-16283.  doi: 10.1021/jacs.8b10024

    40. [40]

      Galanti, A.; Diez-Cabanes, V.; Santoro J.; Valášek, M.; Minoia, A.; Mayor, M.; Cornil, J.; Samorì, P. Electronic decoupling in C3-symmetrical light-responsive tris(azobenzene) scaffolds: Self-Assembly and multiphotochromism. J. Am. Chem. Soc. 2018, 140, 16062-16070.  doi: 10.1021/jacs.8b06324

  • 加载中
    1. [1]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    2. [2]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    3. [3]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    4. [4]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    5. [5]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    6. [6]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    7. [7]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    8. [8]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    9. [9]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    10. [10]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    11. [11]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    12. [12]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    13. [13]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    14. [14]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    15. [15]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    16. [16]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    17. [17]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    18. [18]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    19. [19]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    20. [20]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

Metrics
  • PDF Downloads(0)
  • Abstract views(769)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return