-
[1]
Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mat. Sci. Eng. R. 2009, 63, 100-125.
doi: 10.1016/j.mser.2008.09.002
-
[2]
Zhang, M.; Zhang, C.; Du, Z. J.; Li, H. Q.; Zou, W. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Compos. Sci. Technol. 2017, 138, 1-7.
doi: 10.1016/j.compscitech.2016.11.010
-
[3]
Raspolli Galletti, A. M.; Antonetti, C.; Marracci, M.; Piccinelli, F.; Tellini, B. Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Appl. Surf. Sci. 2013, 280, 610-618.
doi: 10.1016/j.apsusc.2013.05.035
-
[4]
Tang, W. H.; Liu, B. B.; Liu, Z. W.; Tang, J.; Yuan, H. L. Processing-dependent high impact polystyrene/styrene- butadiene-styrene tri-block copolymer/carbon black antistatic composites. J. Appl. Polym. Sci. 2012, 123, 1032-1039.
doi: 10.1002/app.34559
-
[5]
Xue, B.; Feng, T. T.; Zhou, S. T.; Bao, J. J. High electrical conductive polymethylmethacrylate/graphite composites obtained via a novel pickering emulsion route. J. Polym. Res. 2014, 21, 373.
doi: 10.1007/s10965-014-0373-z
-
[6]
Zhang, W.; Blackburn, R. S.; Dehghani-Sanij, A. A. Effect of carbon black concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites. J. Mater. Sci. 2007, 42, 7861-7865.
doi: 10.1007/s10853-007-1670-2
-
[7]
Wu, Y.; Liao, L. D.; Pan, H. C.; He, L.; Lin, C. T.; Tan, M. C. Fabrication and interfacial characteristics of surface modified Ag nanoparticle based conductive composites. RSC Adv. 2017, 7, 29702-29712.
doi: 10.1039/C7RA04657J
-
[8]
Guadagno, L.; Raimondo, M.; Vertuccio, L.; Naddeo, C.; Barra, G.; Longo, P.; Lamberti, P.; Spinelli, G.; Nobile, M. R. Morphological, rheological and electrical properties of composites filled with carbon nanotubes functionalized with 1-pyrenebutyric acid. Compos. Part B-Eng. 2018, 147, 12-21.
doi: 10.1016/j.compositesb.2018.04.036
-
[9]
Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
doi: 10.1126/science.1157996
-
[10]
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
doi: 10.1038/nmat1849
-
[11]
Fim, F. C.; Basso, N. R. S.; Graebin, A. P.; Azambuja, D. S.; Galland, G. B. Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 2013, 128, 2630-2637.
doi: 10.1002/app.v128.5
-
[12]
Drzal, L. T.; Jiang, X. Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J. Appl. Polym. Sci. 2012, 124, 525-535.
doi: 10.1002/app.34891
-
[13]
Shi, G.; Araby, S.; Gibson, C. T.; Meng, Q. S.; Zhu, S. M.; Ma, J. Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications. Adv. Funct. Mater. 2018, 28, 1706705.
doi: 10.1002/adfm.v28.19
-
[14]
Pang, H.; Zhong, G. J.; Xu, J. Z.; Yan, D. X.; Ji, X.; Li, Z. M.; Chen, C. Non-isothermal crystallization of ethylene-vinyl acetate copolymer containing a high weight fraction of graphene nanosheets and carbon nanotubes. Chinese J. Polym. Sci. 2012, 30, 879-892.
doi: 10.1007/s10118-012-1170-y
-
[15]
Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Yu, Z. Z. Simultaneous functionalization and reduction of graphene oxide with polyetheramine and its electrically conductive epoxy nanocomposites. Chinese J. Polym. Sci. 2014, 32, 975-985.
doi: 10.1007/s10118-014-1488-8
-
[16]
Yan, D. X.; Xu, L.; Chen, C.; Tang, J. H.; Ji, X.; Li, Z. M. Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polym. Int. 2012, 61, 1107-1114.
doi: 10.1002/pi.v61.7
-
[17]
Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Recent advances in chemical modifications of graphene. Nano Res. 2014, 8, 1039-1074.
-
[18]
Quiles-Díaz, S.; Enrique-Jimenez, P.; Papageorgiou, D. G.; Ania, F.; Flores, A.; Kinloch, I. A.; Gómez-Fatou, M. A.; Young, R. J.; Salavagione, H. J. Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos. Part A-Appl. S. 2017, 100, 31-39.
doi: 10.1016/j.compositesa.2017.04.019
-
[19]
He, Z. X.; Zhang, B. Q.; Zhang, H. B.; Zhi, X.; Hu, Q. H.; Gui, C. X.; Yu, Z. Z. Improved rheological and electrical properties of graphene/polystyrene nanocomposites modified with styrene maleic anhydride copolymer. Compos. Sci. Technol. 2014, 102, 176-182.
doi: 10.1016/j.compscitech.2014.08.004
-
[20]
Araby, S.; Li, J. H.; Shi, G.; Ma, Z.; Ma, J. Graphene for flame-retarding elastomeric composite foams having strong interface. Compos. Part A-Appl. S. 2017, 101, 254-264.
doi: 10.1016/j.compositesa.2017.06.022
-
[21]
Song, H. P.; Liu, J. Q.; Xue, F. B.; Cheng, F. Q. The application of ultra-fine fly ash in the seal coating for the wall of underground coal mine. Adv. Powder Technol. 2016, 27, 1645-1650.
doi: 10.1016/j.apt.2016.05.028
-
[22]
Li, S. Z.; Wang, J. K.; Li, Y. Y.; Wu, G. H.; Wang, Y. M.; Wang, W. Q.; Guo, J. H. Preparation and applications of the tertiary copolymer poly(ethylene glycol) methacrylate/methyl methacrylate/diethyl allylphosphonate. J. Appl. Polym. Sci. 2016, 133, 44126.
-
[23]
Yu, F. L.; Xu, F. J.; Song, Y. M.; Fang, Y. Q.; Zhang, Z. J.; Wang, Q. W.; Wang, F. Q. Expandable graphite's versatility and synergy with carbon black and ammonium polyphosphate in improving antistatic and fire-retardant properties of wood flour/polypropylene composites. Polym. Composite. 2017, 38, 767-773.
doi: 10.1002/pc.23636
-
[24]
Li, Q.; Chen, Y. Q.; Song, X. P.; Xie, Y. P.; Hou, Q.; Shi, G. Synthesis of phosphorus-containing flame-retardant antistatic copolymers and their applications in polypropylene. J. Appl. Polym. Sci. 2015, 132, 41677.
-
[25]
Xu, J.; Xiao, J.; Zhang, Z. Y.; Wang, X. L.; Chen, X. D.; Yang, X. S.; Zhang, W.; Yang, L. Modified polyaniline and its effects on the microstructure and antistatic properties of PP/PANI-APP/CPP composites. J. Appl. Polym. Sci. 2014, 131, 40732.
-
[26]
Dasari, A.; Yu, Z. Z.; Cai, G. P.; Mai, Y. W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013, 38, 1357-1387.
doi: 10.1016/j.progpolymsci.2013.06.006
-
[27]
Xiao, W. D.; He, P. X.; He, B. Q.; Zhang, F. M. Study on the flame-retarding mechanism of brominated polystyrene waste in cured epoxy resin. J. Fire Sci. 2003, 21, 319-329.
doi: 10.1177/0734904103021004006
-
[28]
Li, A.; Yang, D. D.; Li, H. N.; Jiang, C. L.; Liang, J. Z. Flame-retardant and mechanical properties of rigid polyurethane foam/MRP/Mg(OH)2/GF/HGB composites. J. Appl. Polym. Sci. 2018, 135, 46551.
doi: 10.1002/app.v135.31
-
[29]
Yang, W.; Tawiah, B.; Yu, C.; Qian, Y. F.; Wang, L. L.; Yuen, A. C. Y.; Zhu, S. E.; Hu, E. Z.; Chen, T. B. Y.; Yu, B.; Lu, H. D.; Yeoh, G. H.; Wang, X.; Song, L.; Hu, Y. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos. Part A-Appl. S. 2018, 110, 227-236.
doi: 10.1016/j.compositesa.2018.04.027
-
[30]
Chen, X.; Wang, J.; Huo, S. Q.; Yang, S.; Zhang, B.; Cai, H. P. Preparation of flame-retardant cyanate ester resin combined with phosphorus-containing maleimide. J. Therm. Anal. Calorim. 2018, 132, 1617-1628.
doi: 10.1007/s10973-018-6979-3
-
[31]
Shen, Y.; Zhang, H. B.; Zhang, H.; Ren, W.; Dasari, A.; Tang, G. S.; Yu, Z. Z. Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon 2013, 56, 132-138.
doi: 10.1016/j.carbon.2012.12.088
-
[32]
Quan, Y.; Liu, Q. F.; Zhang, S. L.; Zhang, S. Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black. Appl. Surf. Sci. 2018, 445, 335-341.
doi: 10.1016/j.apsusc.2018.03.182
-
[33]
Cuong, T. V.; Pham, V. H.; Tran, Q. T.; Hahn, S. H.; Chung, J. S.; Shin, E. W.; Kim, E. J. Photoluminescence and raman studies of graphene thin films prepared by reduction of graphene oxide. Mater. Lett. 2010, 64, 399-401.
doi: 10.1016/j.matlet.2009.11.029
-
[34]
Ramakrishnan, M. C.; Thangavelu, R. R. Synthesis and characterization of reduced graphene oxide. Adv. Mater. Res. 2013, 678, 56-60.
doi: 10.4028/www.scientific.net/AMR.678
-
[35]
Prashantha, K.; Soulestin, J.; Lacrampe, M. F.; Krawczak, P. Present status and key challenges of carbon nanotubes reinforced polyolefins: A review on nanocomposites manufacturing and performance issues. Polym. Polym. Compos. 2009, 17, 205-245.
doi: 10.1177/096739110901700402
-
[36]
Tripathi, S. N.; Rao, G. S. S.; Mathur, A. B.; Jasra, R. Polyolefin/graphene nanocomposites: A review. RSC Adv. 2017, 7, 23615-23632.
doi: 10.1039/C6RA28392F
-
[37]
Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H. H.; Yu, Z. Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884-3890.
doi: 10.1021/nn9010472
-
[38]
Jia, J. J.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Mai, Y. W.; Kim, J. K. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 2014, 8, 5774-5783.
doi: 10.1021/nn500590g
-
[39]
Kaynak, C.; Isitman, N. A. Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing brominated epoxy and antimony oxide. Polym. Degrad. Stabil. 2011, 96, 798-807.
doi: 10.1016/j.polymdegradstab.2011.02.011
-
[40]
Ran, S.; Guo, Z. H.; Han, L. G.; Fang, Z. P. Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym. Int. 2014, 63, 1835-1841.
doi: 10.1002/pi.2014.63.issue-10
-
[41]
Basu, B.; Jain, D.; Kumar, N.; Choudhury, P.; Bose, A.; Bose, S.; Bose, P. Processing, tensile, and fracture properties of injection molded Hdpe-Al2O3-HAp hybrid composites. J. Appl. Polym. Sci. 2011, 121, 2500-2511.
doi: 10.1002/app.v121.5
-
[42]
Yurddaskal M, Nil M, Ozturk Y, Celik E. Synergetic effect of antimony trioxide on the flame retardant and mechanical properties of polymer composites for consumer electronics applications. J. Mater. Sci-Mater. El. 2017, 29, 4557-4563.
-
[43]
Subasinghe, A.; Somashekar, A. A.; Bhattacharyya, D. Effects of wool fibre and other additives on the flammability and mechanical performance of polypropylene/kenaf composites. Compos. Part B-Eng. 2018, 136, 168-176.
doi: 10.1016/j.compositesb.2017.10.034