Citation: Yu Chen, Jian Yao, Ming-Ke Xu, Zhi-Guo Jiang, Hao-Bin Zhang. Electrically Conductive and Flame Retardant Graphene/Brominated Polystyrene/Maleic Anhydride Grafted High Density Polyethylene Nanocomposites with Satisfactory Mechanical Properties[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 509-517. doi: 10.1007/s10118-019-2220-5 shu

Electrically Conductive and Flame Retardant Graphene/Brominated Polystyrene/Maleic Anhydride Grafted High Density Polyethylene Nanocomposites with Satisfactory Mechanical Properties

  • Electrically conductive and flame-retardant maleic anhydride grafted high-density polyethylene (MA-HDPE) nanocomposites with satisfactory mechanical properties are fabricated by melt compounding MA-HDPE with polyethyleneimine (PEI)-modified reduced graphene oxide (PEI@RGO) as the conductive nanofiller and brominated polystyrene (BPS) as the flame retardant. The modification with PEI significantly improves the interfacial compatibility and dispersion of the RGO sheets in the MA-HDPE matrix, leading to electrically conductive nanocomposites with enhanced mechanical properties. Furthermore, the addition of 25 wt% of BPS makes the nanocomposite flame-retardant with a UL-94 V-0 rating. Thus, the multifunctional RGO/MA-HDPE nanocomposites with good electrical, flame-retardant, and mechanical properties would have potential applications in construction and pipeline fields.
  • 加载中
    1. [1]

      Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mat. Sci. Eng. R. 2009, 63, 100-125.  doi: 10.1016/j.mser.2008.09.002

    2. [2]

      Zhang, M.; Zhang, C.; Du, Z. J.; Li, H. Q.; Zou, W. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Compos. Sci. Technol. 2017, 138, 1-7.  doi: 10.1016/j.compscitech.2016.11.010

    3. [3]

      Raspolli Galletti, A. M.; Antonetti, C.; Marracci, M.; Piccinelli, F.; Tellini, B. Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Appl. Surf. Sci. 2013, 280, 610-618.  doi: 10.1016/j.apsusc.2013.05.035

    4. [4]

      Tang, W. H.; Liu, B. B.; Liu, Z. W.; Tang, J.; Yuan, H. L. Processing-dependent high impact polystyrene/styrene- butadiene-styrene tri-block copolymer/carbon black antistatic composites. J. Appl. Polym. Sci. 2012, 123, 1032-1039.  doi: 10.1002/app.34559

    5. [5]

      Xue, B.; Feng, T. T.; Zhou, S. T.; Bao, J. J. High electrical conductive polymethylmethacrylate/graphite composites obtained via a novel pickering emulsion route. J. Polym. Res. 2014, 21, 373.  doi: 10.1007/s10965-014-0373-z

    6. [6]

      Zhang, W.; Blackburn, R. S.; Dehghani-Sanij, A. A. Effect of carbon black concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites. J. Mater. Sci. 2007, 42, 7861-7865.  doi: 10.1007/s10853-007-1670-2

    7. [7]

      Wu, Y.; Liao, L. D.; Pan, H. C.; He, L.; Lin, C. T.; Tan, M. C. Fabrication and interfacial characteristics of surface modified Ag nanoparticle based conductive composites. RSC Adv. 2017, 7, 29702-29712.  doi: 10.1039/C7RA04657J

    8. [8]

      Guadagno, L.; Raimondo, M.; Vertuccio, L.; Naddeo, C.; Barra, G.; Longo, P.; Lamberti, P.; Spinelli, G.; Nobile, M. R. Morphological, rheological and electrical properties of composites filled with carbon nanotubes functionalized with 1-pyrenebutyric acid. Compos. Part B-Eng. 2018, 147, 12-21.  doi: 10.1016/j.compositesb.2018.04.036

    9. [9]

      Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.  doi: 10.1126/science.1157996

    10. [10]

      Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.  doi: 10.1038/nmat1849

    11. [11]

      Fim, F. C.; Basso, N. R. S.; Graebin, A. P.; Azambuja, D. S.; Galland, G. B. Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 2013, 128, 2630-2637.  doi: 10.1002/app.v128.5

    12. [12]

      Drzal, L. T.; Jiang, X. Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J. Appl. Polym. Sci. 2012, 124, 525-535.  doi: 10.1002/app.34891

    13. [13]

      Shi, G.; Araby, S.; Gibson, C. T.; Meng, Q. S.; Zhu, S. M.; Ma, J. Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications. Adv. Funct. Mater. 2018, 28, 1706705.  doi: 10.1002/adfm.v28.19

    14. [14]

      Pang, H.; Zhong, G. J.; Xu, J. Z.; Yan, D. X.; Ji, X.; Li, Z. M.; Chen, C. Non-isothermal crystallization of ethylene-vinyl acetate copolymer containing a high weight fraction of graphene nanosheets and carbon nanotubes. Chinese J. Polym. Sci. 2012, 30, 879-892.  doi: 10.1007/s10118-012-1170-y

    15. [15]

      Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Yu, Z. Z. Simultaneous functionalization and reduction of graphene oxide with polyetheramine and its electrically conductive epoxy nanocomposites. Chinese J. Polym. Sci. 2014, 32, 975-985.  doi: 10.1007/s10118-014-1488-8

    16. [16]

      Yan, D. X.; Xu, L.; Chen, C.; Tang, J. H.; Ji, X.; Li, Z. M. Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polym. Int. 2012, 61, 1107-1114.  doi: 10.1002/pi.v61.7

    17. [17]

      Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Recent advances in chemical modifications of graphene. Nano Res. 2014, 8, 1039-1074.

    18. [18]

      Quiles-Díaz, S.; Enrique-Jimenez, P.; Papageorgiou, D. G.; Ania, F.; Flores, A.; Kinloch, I. A.; Gómez-Fatou, M. A.; Young, R. J.; Salavagione, H. J. Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos. Part A-Appl. S. 2017, 100, 31-39.  doi: 10.1016/j.compositesa.2017.04.019

    19. [19]

      He, Z. X.; Zhang, B. Q.; Zhang, H. B.; Zhi, X.; Hu, Q. H.; Gui, C. X.; Yu, Z. Z. Improved rheological and electrical properties of graphene/polystyrene nanocomposites modified with styrene maleic anhydride copolymer. Compos. Sci. Technol. 2014, 102, 176-182.  doi: 10.1016/j.compscitech.2014.08.004

    20. [20]

      Araby, S.; Li, J. H.; Shi, G.; Ma, Z.; Ma, J. Graphene for flame-retarding elastomeric composite foams having strong interface. Compos. Part A-Appl. S. 2017, 101, 254-264.  doi: 10.1016/j.compositesa.2017.06.022

    21. [21]

      Song, H. P.; Liu, J. Q.; Xue, F. B.; Cheng, F. Q. The application of ultra-fine fly ash in the seal coating for the wall of underground coal mine. Adv. Powder Technol. 2016, 27, 1645-1650.  doi: 10.1016/j.apt.2016.05.028

    22. [22]

      Li, S. Z.; Wang, J. K.; Li, Y. Y.; Wu, G. H.; Wang, Y. M.; Wang, W. Q.; Guo, J. H. Preparation and applications of the tertiary copolymer poly(ethylene glycol) methacrylate/methyl methacrylate/diethyl allylphosphonate. J. Appl. Polym. Sci. 2016, 133, 44126.

    23. [23]

      Yu, F. L.; Xu, F. J.; Song, Y. M.; Fang, Y. Q.; Zhang, Z. J.; Wang, Q. W.; Wang, F. Q. Expandable graphite's versatility and synergy with carbon black and ammonium polyphosphate in improving antistatic and fire-retardant properties of wood flour/polypropylene composites. Polym. Composite. 2017, 38, 767-773.  doi: 10.1002/pc.23636

    24. [24]

      Li, Q.; Chen, Y. Q.; Song, X. P.; Xie, Y. P.; Hou, Q.; Shi, G. Synthesis of phosphorus-containing flame-retardant antistatic copolymers and their applications in polypropylene. J. Appl. Polym. Sci. 2015, 132, 41677.

    25. [25]

      Xu, J.; Xiao, J.; Zhang, Z. Y.; Wang, X. L.; Chen, X. D.; Yang, X. S.; Zhang, W.; Yang, L. Modified polyaniline and its effects on the microstructure and antistatic properties of PP/PANI-APP/CPP composites. J. Appl. Polym. Sci. 2014, 131, 40732.

    26. [26]

      Dasari, A.; Yu, Z. Z.; Cai, G. P.; Mai, Y. W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013, 38, 1357-1387.  doi: 10.1016/j.progpolymsci.2013.06.006

    27. [27]

      Xiao, W. D.; He, P. X.; He, B. Q.; Zhang, F. M. Study on the flame-retarding mechanism of brominated polystyrene waste in cured epoxy resin. J. Fire Sci. 2003, 21, 319-329.  doi: 10.1177/0734904103021004006

    28. [28]

      Li, A.; Yang, D. D.; Li, H. N.; Jiang, C. L.; Liang, J. Z. Flame-retardant and mechanical properties of rigid polyurethane foam/MRP/Mg(OH)2/GF/HGB composites. J. Appl. Polym. Sci. 2018, 135, 46551.  doi: 10.1002/app.v135.31

    29. [29]

      Yang, W.; Tawiah, B.; Yu, C.; Qian, Y. F.; Wang, L. L.; Yuen, A. C. Y.; Zhu, S. E.; Hu, E. Z.; Chen, T. B. Y.; Yu, B.; Lu, H. D.; Yeoh, G. H.; Wang, X.; Song, L.; Hu, Y. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos. Part A-Appl. S. 2018, 110, 227-236.  doi: 10.1016/j.compositesa.2018.04.027

    30. [30]

      Chen, X.; Wang, J.; Huo, S. Q.; Yang, S.; Zhang, B.; Cai, H. P. Preparation of flame-retardant cyanate ester resin combined with phosphorus-containing maleimide. J. Therm. Anal. Calorim. 2018, 132, 1617-1628.  doi: 10.1007/s10973-018-6979-3

    31. [31]

      Shen, Y.; Zhang, H. B.; Zhang, H.; Ren, W.; Dasari, A.; Tang, G. S.; Yu, Z. Z. Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon 2013, 56, 132-138.  doi: 10.1016/j.carbon.2012.12.088

    32. [32]

      Quan, Y.; Liu, Q. F.; Zhang, S. L.; Zhang, S. Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black. Appl. Surf. Sci. 2018, 445, 335-341.  doi: 10.1016/j.apsusc.2018.03.182

    33. [33]

      Cuong, T. V.; Pham, V. H.; Tran, Q. T.; Hahn, S. H.; Chung, J. S.; Shin, E. W.; Kim, E. J. Photoluminescence and raman studies of graphene thin films prepared by reduction of graphene oxide. Mater. Lett. 2010, 64, 399-401.  doi: 10.1016/j.matlet.2009.11.029

    34. [34]

      Ramakrishnan, M. C.; Thangavelu, R. R. Synthesis and characterization of reduced graphene oxide. Adv. Mater. Res. 2013, 678, 56-60.  doi: 10.4028/www.scientific.net/AMR.678

    35. [35]

      Prashantha, K.; Soulestin, J.; Lacrampe, M. F.; Krawczak, P. Present status and key challenges of carbon nanotubes reinforced polyolefins: A review on nanocomposites manufacturing and performance issues. Polym. Polym. Compos. 2009, 17, 205-245.  doi: 10.1177/096739110901700402

    36. [36]

      Tripathi, S. N.; Rao, G. S. S.; Mathur, A. B.; Jasra, R. Polyolefin/graphene nanocomposites: A review. RSC Adv. 2017, 7, 23615-23632.  doi: 10.1039/C6RA28392F

    37. [37]

      Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H. H.; Yu, Z. Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884-3890.  doi: 10.1021/nn9010472

    38. [38]

      Jia, J. J.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Mai, Y. W.; Kim, J. K. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 2014, 8, 5774-5783.  doi: 10.1021/nn500590g

    39. [39]

      Kaynak, C.; Isitman, N. A. Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing brominated epoxy and antimony oxide. Polym. Degrad. Stabil. 2011, 96, 798-807.  doi: 10.1016/j.polymdegradstab.2011.02.011

    40. [40]

      Ran, S.; Guo, Z. H.; Han, L. G.; Fang, Z. P. Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym. Int. 2014, 63, 1835-1841.  doi: 10.1002/pi.2014.63.issue-10

    41. [41]

      Basu, B.; Jain, D.; Kumar, N.; Choudhury, P.; Bose, A.; Bose, S.; Bose, P. Processing, tensile, and fracture properties of injection molded Hdpe-Al2O3-HAp hybrid composites. J. Appl. Polym. Sci. 2011, 121, 2500-2511.  doi: 10.1002/app.v121.5

    42. [42]

      Yurddaskal M, Nil M, Ozturk Y, Celik E. Synergetic effect of antimony trioxide on the flame retardant and mechanical properties of polymer composites for consumer electronics applications. J. Mater. Sci-Mater. El. 2017, 29, 4557-4563.

    43. [43]

      Subasinghe, A.; Somashekar, A. A.; Bhattacharyya, D. Effects of wool fibre and other additives on the flammability and mechanical performance of polypropylene/kenaf composites. Compos. Part B-Eng. 2018, 136, 168-176.  doi: 10.1016/j.compositesb.2017.10.034

  • 加载中
    1. [1]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    2. [2]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    5. [5]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    6. [6]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    7. [7]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    8. [8]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    9. [9]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    10. [10]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    11. [11]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    12. [12]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    15. [15]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    16. [16]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    17. [17]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    18. [18]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    19. [19]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    20. [20]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

Metrics
  • PDF Downloads(0)
  • Abstract views(820)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return