Citation: Yu-Jie Wang, Su-Ying Yan, Zhi-Ping Zhao, Zhen-Yu Xi. Isothermal Crystallization of iPP in Environment-friendly Diluents: Effect of Binary Diluents and Crystallization Temperature on Crystallization Kinetics[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 617-626. doi: 10.1007/s10118-019-2219-y shu

Isothermal Crystallization of iPP in Environment-friendly Diluents: Effect of Binary Diluents and Crystallization Temperature on Crystallization Kinetics

  • Corresponding author: Zhi-Ping Zhao, zhaozp@bit.edu.cn
  • Received Date: 23 October 2018
    Revised Date: 13 December 2018
    Available Online: 15 February 2019

  • The growing demand for non-toxic solvents for membrane preparation has motivated the studies for green and sustainable alternatives of solvents. The effect of droplet isothermal growth within the liquid-liquid phase separation region on isothermal spherulitic growth rate of isotactic polypropylene (iPP) was investigated. The results showed that the droplets grew up at a rate of 0.0172 μm·s−1. The larger droplets slowed down the isothermal spherulitic growth rate of iPP. Higher mass ratio of carnauba wax (Cwax)/soybean oil (SO) resulted in faster droplet growth due to weak interaction with polymers. The isothermal crystallization behaviors of iPP in environment-friendly binary diluents consisting of Cwax and SO mixture were further investigated experimentally using polarized optical microscopy. It was demonstrated that the isothermal spherulitic growth rate of iPP in diluents decreased nonlinearly with the increasing crystallization temperature. Compared with virgin iPP, isothermal spherulitic growth rate of iPP in SO diluent was significantly slowed down. The spherulitic growth was further retarded after the addition of Cwax in mixed diluents, resulting in a lower crystallization rate than that in SO. Moreover, the crystal form of iPP membranes was found to be α type through the characterization of small angle X-ray scattering and wide angle X-ray diffraction.
  • 加载中
    1. [1]

      van de Witte, P.; Dijkstra, P. J.; van den Berg, J. W. A.; Feijen, J. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 1996, 117, 1-31.  doi: 10.1016/0376-7388(96)00088-9

    2. [2]

      Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. Porous membranes in secondary battery technologies. Chem. Soc. Rev. 2017, 46, 2199-2236.  doi: 10.1039/C6CS00823B

    3. [3]

      Cui, Z.; Hassankiadeh, N. T.; Lee, S. Y.; Lee, J. M.; Woo, K. T.; Sanguineti, A.; Arcella, V.; Lee, Y. M.; Drioli, E. Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. J. Membr. Sci. 2013, 444, 223-236.  doi: 10.1016/j.memsci.2013.05.031

    4. [4]

      Liu, M.; Liu, S.; Xu, Z.; Wei, Y.; Yang, H. Formation of microporous polymeric membranes via thermally induced phase separation: A review. Front. Chem. Sci. Eng. 2016, 10, 57-75.  doi: 10.1007/s11705-016-1561-7

    5. [5]

      Lin, H. H.; Tang, Y. H.; Liu, T. Y.; Matsuyama, H.; Wang, X. L. Understanding the thermally induced phase separation process via a Maxwell-Stefan model. J. Membr. Sci. 2016, 507, 143-153.  doi: 10.1016/j.memsci.2016.01.049

    6. [6]

      Jung, J. T.; Kim, J. F.; Wang, H. H.; di Nicolo, E.; Drioli, E.; Lee, Y. M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250-263.  doi: 10.1016/j.memsci.2016.04.069

    7. [7]

      Sawada, S.-i.; Ursino, C.; Galiano, F.; Simone, S.; Drioli, E.; Figoli, A. Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. J. Membr. Sci. 2015, 493, 232-242.  doi: 10.1016/j.memsci.2015.07.003

    8. [8]

      Mino, Y.; Ishigami, T.; Kagawa, Y.; Matsuyama, H. Three-dimensional phase-field simulations of membrane porous structure formation by thermally induced phase separation in polymer solutions. J. Membr. Sci. 2015, 483, 104-111.  doi: 10.1016/j.memsci.2015.02.005

    9. [9]

      Song, S. W.; Torkelson, J. M. Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. J. Membr. Sci. 1995, 98, 209-222.  doi: 10.1016/0376-7388(94)00189-6

    10. [10]

      Lloyd, D. R.; Kim, S. S.; Kinzer, K. E. Microporous membrane formation via thermally induced phase separation. II. Liquid-liquid phase separation. J. Membr. Sci. 1991, 64, 1-11.  doi: 10.1016/0376-7388(91)80073-F

    11. [11]

      Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J. Membr. Sci. 1990, 52, 239-261.  doi: 10.1016/S0376-7388(00)85130-3

    12. [12]

      Kinzer, K. E.; Lloyd, D. R. Thermally induced phase separation mechanisms for microporous membrane formation. Polym. Mater. Sci. Eng. 1989, 61, 794-8.

    13. [13]

      Lim, G. B. A.; Kim, S. S.; Ye, Q.; Wang, Y. F.; Lloyd, D. R. Microporous membrane formation via thermally induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. J. Membr. Sci. 1991, 64, 31-40.  doi: 10.1016/0376-7388(91)80075-H

    14. [14]

      Wang, Y. F.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. IV. Effect of dilution and crystallization temperature on overall crystallization kinetics. Polymer 1993, 34, 4740-4746.  doi: 10.1016/0032-3861(93)90711-I

    15. [15]

      Wang, Y. F.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. III. Effect of dilution and crystallization temperature on growth rate. Polymer 1993, 34, 2324-9.  doi: 10.1016/0032-3861(93)90816-S

    16. [16]

      Lin, G. B. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. I: Effect of nucleating agent addition on overall crystallization kinetics. Polym. Eng. Sci. 1993, 33, 513-21.  doi: 10.1002/pen.760330902

    17. [17]

      Lim, G. B. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. II: Effect of nucleating agent addition on growth rate. Polym. Eng. Sci. 1993, 33, 522-8.  doi: 10.1002/pen.760330903

    18. [18]

      Alwattari, A. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene-hexamethylbenzene blends: kinetics analysis. Polymer 1998, 39, 1129-1137.  doi: 10.1016/S0032-3861(97)00396-0

    19. [19]

      Alwattari, A. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene-hexamethylbenzene blends: crystal morphology. Polymer 1994, 35, 2710-15.  doi: 10.1016/0032-3861(94)90297-6

    20. [20]

      Lin, Y. K.; Chen, G.; Yang, J.; Wang, X. L. Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination 2009, 236, 8-15.  doi: 10.1016/j.desal.2007.10.044

    21. [21]

      Tang, Y. H.; He, Y. D.; Wang, X. L. Effect of adding a second diluent on the membrane formation of polymer/diluent system via thermally induced phase separation: Dissipative particle dynamics simulation and its experimental verification. J. Membr. Sci. 2012, 409-410, 164-172.  doi: 10.1016/j.memsci.2012.03.052

    22. [22]

      Park, M. J.; Noh, S. C.; Kim, C. K. Effects of the phase behavior of the diluent mixture on the microstructure of polyethylene membranes formed by thermally induced phase separation process. Ind. Eng. Chem. Res. 2013, 52, 10690-10698.  doi: 10.1021/ie4010282

    23. [23]

      Jeon, M. Y.; Kim, C. K. Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure. J. Membr. Sci. 2007, 300, 172-181.  doi: 10.1016/j.memsci.2007.05.022

    24. [24]

      Zhou, B.; Tang, Y.; Li, Q.; Lin, Y.; Yu, M.; Xiong, Y.; Wang, X. Preparation of polypropylene microfiltration membranes via thermally induced (solid-liquid or liquid-liquid) phase separation method. J. Appl. Polym. Sci. 2015, 132, 42490-9.

    25. [25]

      Wu, Q. Y.; Wan, L. S.; Xu, Z. K. Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. J. Membr. Sci. 2012, 409-410, 355-364.  doi: 10.1016/j.memsci.2012.04.006

    26. [26]

      Sun, Z.; Yang, Z.; Wang, Z.; Li, C. The role of pre-evaporation in the preparation process of EVOH ultrafiltration membranes via TIPS. J. Membr. Sci. 2018, 563, 238-246.  doi: 10.1016/j.memsci.2018.06.003

    27. [27]

      Roh, S. C.; Park, M. J.; Yoo, S. H.; Kim, C. K. Changes in microporous structure of polyethylene membrane fabricated from PE/PTMG/paraffin ternary mixtures. J. Membr. Sci. 2012, 411-412, 201-210.  doi: 10.1016/j.memsci.2012.04.032

    28. [28]

      Yang, Z.; Li, P.; Xie, L.; Wang, Z.; Wang, S. C. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP. Desalination 2006, 192, 168-181.  doi: 10.1016/j.desal.2005.10.016

    29. [29]

      McGuire, K. S.; Laxminarayan, A.; Lloyd, D. R. Kinetics of droplet growth in liquid—liquid phase separation of polymer-diluent systems: experimental results. Polymer 1995, 36, 4951-4960.  doi: 10.1016/0032-3861(96)81620-X

    30. [30]

      McGuire, K. S.; Laxminarayan, A.; Martula, D. S.; Lloyd, D. R. Kinetics of droplet growth in liquid–liquid phase separation of polymer-diluent systems: Model development. J.Colloid Interface Sci. 1996, 182, 46-58.  doi: 10.1006/jcis.1996.0435

    31. [31]

      Matsuyama, H.; Teramoto, M.; Kudari, S.; Kitamura, Y. Effect of diluents on membrane formation via thermally induced phase separation. J. Appl. Polym. Sci. 2001, 82, 169-177.  doi: 10.1002/app.1836

    32. [32]

      Wang, Y. J.; Zhao, Z. P.; Xi, Z. Y.; Yan, S. Y. Microporous polypropylene membrane prepared via TIPS using environment-friendly binary diluents and its VMD performance. J. Membr. Sci. 2018, 548, 332-344.  doi: 10.1016/j.memsci.2017.11.023

    33. [33]

      Basson, I.; Reynhardt, E. C. An investigation of the structures and molecular dynamics of natural waxes: II. Carnauba wax. J. Phys. D: Appl. Phys. 1988, 21, 1429-33.  doi: 10.1088/0022-3727/21/9/017

    34. [34]

      Lawrence, J. F.; Iyengar, J. R.; Page, B. D.; Conacher, H. B. S. Characterization of commercial waxes by high-temperature gas chromatography. J. Chromatogr. 1982, 236, 403-19.  doi: 10.1016/S0021-9673(00)84892-X

    35. [35]

      Rodrigues, D. C.; Caceres, C. A.; Ribeiro, H. L.; de Abreu, R. F. A.; Cunha, A. P.; Azeredo, H. M. C. Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films. Food Hydrocolloids 2014, 38, 147-151.  doi: 10.1016/j.foodhyd.2013.12.010

    36. [36]

      Villalobos-Hernandez, J. R.; Mueller-Goymann, C. C. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale. Int. J. Pharm. 2006, 322, 161-170.  doi: 10.1016/j.ijpharm.2006.05.037

    37. [37]

      Zhang, Y.; Adams, M. J.; Zhang, Z.; Vidoni, O.; Leuenberger, B. H.; Achkar, J. Plasticization of carnauba wax with generally recognized as safe (GRAS) additives. Polymer 2016, 86, 208-219.  doi: 10.1016/j.polymer.2016.01.033

    38. [38]

      Lim, J.; Jeong, S.; Oh, I. K.; Lee, S. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT-Food Sci. Technol. 2017, 84, 788-794.  doi: 10.1016/j.lwt.2017.06.054

    39. [39]

      Reddy, K. R.; Tashiro, K.; Sakurai, T.; Yamaguchi, N. Isotope effect on the isothermal crystallization behavior of isotactic polypropylene blends between the deuterated and hydrogenated species. Macromolecules 2009, 42, 1672-1678.  doi: 10.1021/ma802568c

    40. [40]

      Harron, A. F.; Powell, M. J.; Nunez, A.; Moreau, R. A. Analysis of sorghum wax and carnauba wax by reversed phase liquid chromatography mass spectrometry. Ind. Crops Prod. 2017, 98, 116-129.  doi: 10.1016/j.indcrop.2016.09.015

    41. [41]

      Lauritzen Jr, J. I.; Hoffman, J. D. Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J. Appl. Phys. 1973, 44, 4340-4352.  doi: 10.1063/1.1661962

    42. [42]

      Patki, R.; Mezghani, K.; Phillips, P. J. Crystallization Kinetics of Polymers. In Physical Properties of Polymers Handbook, Mark, J. E., Ed. Springer New York, New York, 2007, pp 625−640.

    43. [43]

      Hoffman, J. D. Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 1983, 24, 3-26.  doi: 10.1016/0032-3861(83)90074-5

    44. [44]

      Janimak, J. J.; Cheng, S. Z. D. Crystallization studies in isotactic polypropylene fractions. J. Polym. Eng. 1991, 10, 21-69.

    45. [45]

      Cheng, S. Z. D.; Janimak, J. J.; Zhang, A.; Cheng, H. N. Regime transitions in fractions of isotactic polypropylene. Macromolecules 1990, 23, 298-303.  doi: 10.1021/ma00203a051

    46. [46]

      Clark, E. J.; Hoffman, J. D. Regime III crystallization in polypropylene. Macromolecules 1984, 17, 878-85.  doi: 10.1021/ma00134a058

    47. [47]

      Al-Raheil, I. A.; Qudah, A. M.; Al-Share, M. Isotactic polypropylene crystallized from the melt. I. Morphological study. J. Appl. Polym. Sci. 1998, 67, 1259-1265.  doi: 10.1002/(SICI)1097-4628(19980214)67:7<1259::AID-APP15>3.0.CO;2-X

    48. [48]

      Szumala, P.; Luty, N. Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids Surf., A 2016, 499, 131-140.  doi: 10.1016/j.colsurfa.2016.04.022

  • 加载中
    1. [1]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    2. [2]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    3. [3]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    4. [4]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    5. [5]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    6. [6]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    7. [7]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    8. [8]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    9. [9]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    10. [10]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    11. [11]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    12. [12]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    13. [13]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    14. [14]

      Lingjun ShaBing BoJiayu LiQi LiuYa CaoJing Zhao . Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. Chinese Chemical Letters, 2025, 36(4): 110109-. doi: 10.1016/j.cclet.2024.110109

    15. [15]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    16. [16]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    17. [17]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    18. [18]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    19. [19]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    20. [20]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

Metrics
  • PDF Downloads(0)
  • Abstract views(753)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return