Citation: Hossein Ghasemzadeh, Maryam Dargahi, Ghazaleh Eyvazi, Bahman Vasheghani Farahani. Nanomagnetic Organogel Based on Dodecyl Methacrylate for Absorption and Removal of Organic Solvents[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 444-450. doi: 10.1007/s10118-019-2213-4 shu

Nanomagnetic Organogel Based on Dodecyl Methacrylate for Absorption and Removal of Organic Solvents




  • Author Bio:
    dargahi@sci.ikiu.ac.ir (M.D.)
    ghazaleyvazi@yahoo.com (G.E.)
    bvasheghanif@yahoo.com (V.B.F.)
  • Corresponding author: Hossein Ghasemzadeh, hoghasemzadeh@gmail.com
  • Received Date: 22 September 2018
    Revised Date: 8 December 2018
    Available Online: 29 January 2019

  • A novel nanomagnetic organogel was synthesized by in situ emulsion polymerization-crosslinking method using dodecyl methacrylate (DDMA) and styrene (St) as monomers, divinylbenzene (DVB) as a crosslinking agent, azobisisobutyronitrile (AIBN) as an initiator, and Fe3O4 as a nanomagnetic particle. Modification of the network was carried out by inclusion of the multi-walled carbon nanotubes (MWCNT) into the organogel matrix. The structure of the nanocomposite was characterized using FTIR spectroscopy, SEM, TEM, TGA/DTG, VSM, and BET analysis. The effects of various parameters such as the amount of crosslinker, initiator, Fe3O4, and reaction time as well as monomer ratio on the oil absorption of the organogel were studied. The synthesized organogel can absorb about 35.5, 22.1, 29.86, 14.58, 17.6, 15.3, and 13.7 g·g−1 of CHCl3, toluene, CH2Cl2, hexane, crude oil, gasoline, and diesel oil, under the optimized polymerization conditions, respectively. The nanocomposite organogels can be easily separated by a magnetic field after absorption of organic solvents.
  • 加载中
    1. [1]

      Doshi, B.; Sillanpaa, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262.  doi: 10.1016/j.watres.2018.02.034

    2. [2]

      Kharisov, B. I.; González, M. O.; Quezada, T. S.; de la Fuente, I. G.; Longoria, F. Materials and nanomaterials for the removal of heavy oil components. J. Petrol. Sci. Eng. 2017, 156, 971.  doi: 10.1016/j.petrol.2017.06.065

    3. [3]

      Cao, Sh.; Dong, T.; Xu, G.; Wang, F. M. Oil Spill Cleanup by Hydrophobic Natural Fibers. J. Nat. Fibers 2017, 14, 727-735  doi: 10.1080/15440478.2016.1277820

    4. [4]

      Wang, J.; Zheng, Y.; Wang, A. Effect of kapok fiber treated with various solvents on oil absorbency. Ind. Crops. Prod. 2012, 40, 178.  doi: 10.1016/j.indcrop.2012.03.002

    5. [5]

      Likon, M.; Remskar, M.; Ducman, V.; Svegl, F. Populus seed fibers as a natural source for production of oil super absorbents. J. Environ. Manage. 2013, 114, 158.  doi: 10.1016/j.jenvman.2012.03.047

    6. [6]

      Zheng, Y.; Zhu, Y.; Wang, A.; Hu, H. Potential of Calotropis gigantea fiber as an absorbent for removal of oil from water. Ind. Crops. Prod. 2016, 83, 387.  doi: 10.1016/j.indcrop.2016.01.009

    7. [7]

      Ali, I.; Asim, M.; Khan, T. A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manage. 2012, 113, 170.  doi: 10.1016/j.jenvman.2012.08.028

    8. [8]

      Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous materials for oil spill cleanup. J. Porous. Mat. 2003, 10, 159.  doi: 10.1023/A:1027484117065

    9. [9]

      Chen, C.; Li, F.; Zhang, Y.; Wang, B.; Fan, Y.; Wang, X.; Sun, R. Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem. Eng. J. 2018, 350, 173.  doi: 10.1016/j.cej.2018.05.189

    10. [10]

      Li, Z.; Shao, L.; Hu, W.; Zheng, T.; Lu, L.; Cao, Y.; Chen, Y. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr. Polym. 2018, 191, 183.  doi: 10.1016/j.carbpol.2018.03.027

    11. [11]

      Lee, J. H.; Kim, D. H.; Kim, Y. D. High-performance, recyclable and superhydrophobic oil absorbents consisting of cotton with a polydimethylsiloxane shell. J. Ind. Eng. Chem. 2016, 35, 140.  doi: 10.1016/j.jiec.2015.12.025

    12. [12]

      Özen, İ.; Şimşek, S.; Okyay, G. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Appl. Surf. Sci. 2015, 332, 22.  doi: 10.1016/j.apsusc.2015.01.149

    13. [13]

      Cao, E.; Xiao, W.; Duan, W.; Wang, N.; Wang, A.; Zheng, Y. Metallic nanoparticles roughened Calotropis gigantea fiber enables efficient absorption of oils and organic solvents. Ind. Crops. Prod. 2018, 115, 272.  doi: 10.1016/j.indcrop.2018.02.052

    14. [14]

      Nwadiogbu, J. O.; Ajiwe, V. I. E.; Okoye, P. A. C. Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: Equilibrium and kinetic studies. J. Taibah. Univ. Sci. 2018, 10 (1), 56.

    15. [15]

      Shang, W.; Sheng, Z.; Shen, Y.; Ai, B.; Zheng, L.; Yang, J.; Xu, Z. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid. Carbohydr. Polym. 2016, 141, 135.  doi: 10.1016/j.carbpol.2016.01.009

    16. [16]

      Zhai, T.; Zheng, Q.; Cai, Z.; Xia, H.; Gong, S. Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr. Polym. 2016, 148, 300.  doi: 10.1016/j.carbpol.2016.04.065

    17. [17]

      Chen, J.; Wang, S.; Peng, J.; Li, J.; Zhai, M. New lipophilic polyelectrolyte gels containing quaternary ammonium salt with superabsorbent capacity for organic solvents. ACS Appl. Mater. Interfaces. 2014, 6 (17), 14894.  doi: 10.1021/am504102r

    18. [18]

      Kizil, S.; Karadag, K.; Ozan Aydin, G.; Bulbul Sonmez, H. Poly(alkoxysilane) reusable organogels for removal of oil/organic solvents from water surface. J. Environ. Manage. 2015, 149, 57.  doi: 10.1016/j.jenvman.2014.09.030

    19. [19]

      Nam, C.; Zhang, G.; Chung, T. C. M. Polyolefin-based interpenetrating polymer network absorbent for crude oil entrapment and recovery in aqueous system. J. Hazard. Mater. 2018, 351, 285.  doi: 10.1016/j.jhazmat.2018.03.004

    20. [20]

      Pourjavadi, A.; Doulabi, M.; Soleyman, R. Novel carbon-nanotube-based organogels as candidates for oil recovery. Polym. Int. 2013, 62 (2), 179.  doi: 10.1002/pi.2013.62.issue-2

    21. [21]

      Rahmani, Z.; Samadi, M. T.; Kazemi, A.; Rashidi, A. M.; Rahmani, A. R. Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. J. Environ. Chem. Eng. 2017, 5 (5), 5025.  doi: 10.1016/j.jece.2017.09.028

    22. [22]

      Pourjavadi, A.; Doulabi, M.; Hosseini, S. H. Novel polyelectrolyte gels as absorbent polymers for nonpolar organic solvents based on polymerizable ionic liquids. Polymer 2012, 53 (25), 5737.  doi: 10.1016/j.polymer.2012.10.010

    23. [23]

      Song, C.; Ding, L.; Yao, F.; Deng, J.; Yang, W. β-Cyclodextrin-based oil-absorbent microspheres: preparation and high oil absorbency. Carbohydr. Polym. 2013, 91 (1), 217.  doi: 10.1016/j.carbpol.2012.08.036

    24. [24]

      Zhang, T.; Kong, L.; Dai, Y.; Yue, X.; Rong, J.; Qiu, F.; Pan, J. Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem. Eng. J. 2017, 309, 7.  doi: 10.1016/j.cej.2016.08.085

    25. [25]

      Durgun, M.; Ozan Aydin, G.; Bulbul Sonmez, H. Aromatic alkoxysilane based hybrid organogels as sorbent for toxic organic compounds, fuels and crude oil. React. Funct. Polym. 2017, 115, 63.  doi: 10.1016/j.reactfunctpolym.2017.03.017

    26. [26]

      Cao, W. T.; Liu, Y. J.; Ma, M. G.; Zhu, J. F. Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation. Colloid. Surf. A 2017, 529, 18.  doi: 10.1016/j.colsurfa.2017.05.064

    27. [27]

      Periasamy, A. P.; Wu, W. P.; Ravindranath, R.; Roy, P.; Lin, G. L.; Chang, H. T. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Mar. Pollut. Bull. 2017, 114 (2), 888.  doi: 10.1016/j.marpolbul.2016.11.005

    28. [28]

      Wu, B.; Zhou, M. H. Recycling of waste tyre rubber into oil absorbent. Waste Manag. 2009, 29 (1), 355.  doi: 10.1016/j.wasman.2008.03.002

    29. [29]

      Yin, T.; Zhang, X.; Liu, X.; Wang, C. Resource recovery of Eichhornia crassipes as oil superabsorbent. Mar. Pollut. Bull. 2017, 118 (1-2), 267.  doi: 10.1016/j.marpolbul.2017.01.064

    30. [30]

      Wang, J.; Zheng, Y.; Wang, A. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J. 2012, 213, 1.  doi: 10.1016/j.cej.2012.09.116

    31. [31]

      Wang, Y.; Li, Q.; Bo, L.; Wang, X.; Zhang, T.; Li, S.; Ren, P.; Wei, G. Synthesis and oil absorption of biomorphic MgAl Layered Double Oxide/acrylic ester resin by suspension polymerization. Chem. Eng. J. 2016, 284, 989.  doi: 10.1016/j.cej.2015.09.052

    32. [32]

      Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Rong, J.; Xu, J.; Fang, J. The synthesis of hierarchical porous Al2O3/acrylic resin composites as durable, efficient and recyclable absorbents for oil/water separation. Chem. Eng. J. 2017, 309, 522.  doi: 10.1016/j.cej.2016.10.049

    33. [33]

      Zhang, C.; Yang, D.; Zhang, T.; Qiu, F.; Dai, Y.; Xu, J.; Jing, Z. Synthesis of MnO2/poly(n-butylacrylate- co-butyl methacrylate-co-methyl methacrylate) hybrid resins for efficient oils and organic solvents absorption. J. Clean. Prod. 2017, 148, 398.  doi: 10.1016/j.jclepro.2017.02.009

    34. [34]

      Gao, H.; Sun, P.; Zhang, Y.; Zeng, X.; Wang, D.; Zhang, Y.; Wang, W.; Wu, J. A two-step hydrophobic fabrication of melamine sponge for oil absorption and oil/water separation. Surf. Coat. Tech. 2018, 339, 147.  doi: 10.1016/j.surfcoat.2018.02.022

    35. [35]

      Gupta, S.; Tai, N. H. Carbon materials as oil sorbents: A review on the synthesis and performance. J. Mat. Chem. A 2016, 4, 1550.  doi: 10.1039/C5TA08321D

    36. [36]

      Ge, J.; Zhao, H. Y.; Zhu, H. W.; Huang, J.; Shi, L. A.; Yu, S. H. Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives. Adv. Mater. 2016, 28 (47), 10459.  doi: 10.1002/adma.v28.47

    37. [37]

      Saleem, J.; Adil Riaz, M.; Gordon, M. Oil sorbents from plastic wastes and polymers: A review. J. Hazard. Mater. 2018, 341, 424.  doi: 10.1016/j.jhazmat.2017.07.072

    38. [38]

      Mi, H. Y.; Jing, X.; Xie, H.; Huang, H. X.; Turng, L. S. Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation. Chem. Eng. J. 2018, 337, 541.  doi: 10.1016/j.cej.2017.12.135

    39. [39]

      Gu, J.; Jiang, W.; Wang, F.; Chen, M.; Mao, J.; Xie, T. Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites. Appl. Surf. Sci. 2014, 301, 492.  doi: 10.1016/j.apsusc.2014.02.112

    40. [40]

      Song, B.; Zhu, J.; Fan, H. Magnetic fibrous sorbent for remote and efficient oil adsorption. Mar. Pollut. Bull. 2017, 120 (1-2), 159.  doi: 10.1016/j.marpolbul.2017.05.011

    41. [41]

      Turco, A.; Malitesta, C.; Barillaro, G.; Greco, A.; Maffezzoli, A.; Mazzotta, E. A magnetic and highly reusable macroporous superhydrophobic/superoleophilic DDMS/MWNT nanocomposite for oil sorption from water. J. Mater. Chem. A 2015, 3, 17685.  doi: 10.1039/C5TA04353K

    42. [42]

      Gui, X.; Zeng, Z.; Lin, Z.; Gan, Q.; Xiang, R.; Zhu, Y.; Cao, A.; Tang, Z. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl. Mater. Interfaces. 2013, 5 (12), 5845.  doi: 10.1021/am4015007

    43. [43]

      Cheng, Y.; Xu P.; Zeng W.; Ling Ch.; Zhao Sh.; Liao K.; Sun Y.; Zhou A. Highly hydrophobic and ultralight graphene aerogel as high efficiency oil absorbent material. J. Environ. Chem. Eng. 2017, 5 1957.  doi: 10.1016/j.jece.2017.04.005

    44. [44]

      Teli, M.D.; Valia, S. P. Acetylation of banana fiber to improve oil absorbency. Carbohydr. Polym. 2013, 92, 328.  doi: 10.1016/j.carbpol.2012.09.019

    45. [45]

      Yu, I.; Hao, G.; Liang, Q.; Zhou, Sh.; Zhang N.; Jiang W. Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption. Appl. Surf. Sci. B 2015, 357, 2297.  doi: 10.1016/j.apsusc.2015.09.231

    46. [46]

      Liu T.; Chen Sh.; Liu H.; Oil Adsorption and reuse performance of multi-walled carbon nanotubes, Procedia Eng. 2015, 102, 1896.  doi: 10.1016/j.proeng.2015.01.329

    47. [47]

      Lu, Y.; Wang, Y.; Liu, L.; Yuan, W. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials. Carbohydr. Polym. 2017 173, 422.  doi: 10.1016/j.carbpol.2017.06.009

    48. [48]

      Samadi, S.; Yazd, S. S.; Abdoli, H.; Jafari, P.; Aliabadi, M. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces. Int. J. Biol. Macromol. 2017, 105, 370.  doi: 10.1016/j.ijbiomac.2017.07.050

  • 加载中
    1. [1]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    2. [2]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    3. [3]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    4. [4]

      Salim UllahJianliang ShenHong-Tao Xu . Innovative self-healing conductive organogel: Pioneering the future of electronics. Chinese Chemical Letters, 2025, 36(3): 110553-. doi: 10.1016/j.cclet.2024.110553

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return