Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing
- Corresponding author: Lin Yu, yu_lin@fudan.edu.cn
Citation:
Wei-Ke Xu, Jing-Yu Tang, Zhang Yuan, Cai-Yun Cai, Xiao-Bin Chen, Shu-Quan Cui, Peng Liu, Lin Yu, Kai-Yong Cai, Jian-Dong Ding. Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing[J]. Chinese Journal of Polymer Science,
;2019, 37(6): 548-559.
doi:
10.1007/s10118-019-2212-5
Diegelmann, R. F.; Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci-Landmrk. 2004, 9, 283-289.
doi: 10.2741/1184
Boateng, J. S.; Matthews, K. H.; Stevens, H. N. E.; Eccleston, G. M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892-2923.
doi: 10.1002/jps.21210
Xu, R.; Luo, G. X.; Xia, H. S.; He, W. F.; Zhao, J.; Liu, B.; Tan, J. L.; Zhou, J. Y.; Liu, D. S.; Wang, Y. Z.; Yao, Z. H.; Zhan, R. X.; Yang, S. S.; Wu, J. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 2015, 40, 1-11.
doi: 10.1016/j.biomaterials.2014.10.077
Malmsjo, M.; Ingemansson, R.; Martin, R.; Huddleston, E. Negative-pressure wound therapy using gauze or open-cell polyurethane foam: Similar early effects on pressure transduction and tissue contraction in an experimental porcine wound model. Wound Repair Regen. 2009, 17, 200-205.
doi: 10.1111/wrr.2009.17.issue-2
Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. Improved mechanical properties of poly(butylene succinate) membrane by co-electrospinning with gelatin. Chinese J. Polym. Sci. 2018, 36, 1063-1069.
doi: 10.1007/s10118-018-2112-0
Vargas, E. A.; do Vale Baracho, N. C.; de Brito, J.; de Queiroz, A. A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069-1078.
doi: 10.1016/j.actbio.2009.09.018
Bu, Y. Z.; Sun, G. Z.; Zhang, L. C.; Liu, J. H.; Yang, F.; Tang, P. F.; Wu, D. C. POSS-modified PEG adhesives for wound closure. Chinese J. Polym. Sci. 2017, 35, 1231-1242.
doi: 10.1007/s10118-017-1958-x
Ishihara, J.; Ishihara, A.; Fukunaga, K.; Sasaki, K.; White, M. J. V.; Briquez, P. S.; Hubbell, J. A. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat. Commun. 2018, 9, 2163.
doi: 10.1038/s41467-018-04525-w
Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X.; Guo, B. L. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185-199.
doi: 10.1016/j.biomaterials.2018.08.044
Vukovic, J. S.; Babic, M. M.; Antic, K. M.; Miljkovic, M. G.; Peric-Grujic, A. A.; Filipovic, J. M.; Tomic, S. L. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application. Mater. Chem. Phys. 2015, 164, 51-62.
doi: 10.1016/j.matchemphys.2015.08.022
Zhao, X.; Guo, B. L.; Wu, H.; Liang, Y. P.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784.
doi: 10.1038/s41467-018-04998-9
Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J. X.; Chen, X. S. Antibacterial Hydrogels. Adv. Sci. 2018, 5, 1700527.
doi: 10.1002/advs.v5.5
Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239-1250.
doi: 10.1007/s10118-018-2156-1
Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z. Y.; Cui, W.; Annabi, N.; Ng, K. W.; Dokmeci, M. R.; Ghaemmaghami, A. M.; Khademhosseini, A. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 2016, 5, 108-118.
doi: 10.1002/adhm.201500005
Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z. Y.; Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66-77.
doi: 10.1016/j.actbio.2016.11.017
Gong, C. Y.; Wu, Q. J.; Wang, Y. J.; Zhang, D. D.; Luo, F.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013, 34, 6377-6387.
doi: 10.1016/j.biomaterials.2013.05.005
Hong, J. H.; Lee, H. J.; Jeong, B. Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of Tonsil-derived mesenchymal stem cells. ACS Appl. Mater. Interfaces 2017, 9, 11568-11576.
doi: 10.1021/acsami.7b02488
Yun, E. J.; Yon, B.; Joo, M. K.; Jeong, B. Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel. Biomacromolecules 2012, 13, 1106-1111.
doi: 10.1021/bm2018596
Li, X. L.; Fan, R. R.; Tong, A. P.; Yang, M. J.; Deng, J. J.; Zhou, L. X.; Zhang, X. N.; Guo, G. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int. J. Pharm. 2015, 495, 560-571.
doi: 10.1016/j.ijpharm.2015.09.005
Cui, S. Q.; Yu, L.; Ding, J. D. Injectable thermogels based on block copolymers of appropriate amphiphilicity. Acta Polymerica Sinica (in Chinese) 2018, 8, 863-881.
Fu, S. Z.; Ni, P. Y.; Wang, B. Y.; Chu, B. Y.; Zheng, L.; Luo, F.; Luo, J. C.; Qian, Z. Y. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 2012, 33, 4801-4809.
doi: 10.1016/j.biomaterials.2012.03.040
Zhao, X.; Wu, H.; Guo, B. L.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34-47.
doi: 10.1016/j.biomaterials.2017.01.011
Zheng, Y.; Cheng, Y.; Chen, J.; Ding, J. X.; Li, M.; Li, C.; Wang, J. C.; Chen, X. S. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 3487-3496.
doi: 10.1021/acsami.6b15245
Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41, 4860-4883.
doi: 10.1039/c2cs35078e
Zhang, Y. B.; Zhang, J.; Chang, F.; Xu, W. G.; Ding, J. X. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Mater. Sci. Eng: C Mater. Biol. Appl. 2018, 88, 79-87.
doi: 10.1016/j.msec.2018.02.028
Chen, Y. P.; Li, Y. Z.; Shen, W. J.; Li, K.; Yu, L.; Chen, Q.; Ding, J. D. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci. Rep. 2016, 6, 31593.
doi: 10.1038/srep31593
McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Tang, R.; Liang, K. X.; Achilefu, S.; Kwon, G. S.; Cho, H. Proof-of-concept of polymeric sol-gels in multi-drug delivery and intraoperative image-guided surgery for peritoneal ovarian cancer. Pharm. Res. 2016, 33, 2298-2306.
doi: 10.1007/s11095-016-1968-3
Li, K.; Yu, L.; Liu, X.; Chen, C.; Chen, Q.; Ding, J. D. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 2013, 34, 2834-2842.
doi: 10.1016/j.biomaterials.2013.01.013
Chen, Y. P.; Luan, J. B.; Shen, W. J.; Lei, K. W.; Yu, L.; Ding, J. D. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl. Mater. Interfaces 2016, 8, 30703-30713.
doi: 10.1021/acsami.6b09415
Shen, W. J.; Chen, X. B.; Luan, J. B.; Wang, D. N.; Yu, L.; Ding, J. D. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl. Mater. Interfaces 2017, 9, 40031-40046.
doi: 10.1021/acsami.7b11998
Cao, L. P.; Li, Q. L.; Zhang, C.; Wu, H. C.; Yao, L. Q.; Xu, M. D.; Yu, L.; Ding, J. D. Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel. ACS Biomater. Sci. Eng. 2016, 2, 393-402.
doi: 10.1021/acsbiomaterials.5b00516
Li, X. Z.; Ding, J. X.; Zhang, Z. Z.; Yang, M.; Yu, J. K.; Wang, J.; Chang, F.; Chen, X. S. Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration. ACS Appl. Mater. Interfaces 2016, 8, 5148-5159.
doi: 10.1021/acsami.5b12212
Zhang, Y. B.; Ding, J. X.; Sun, D. K.; Sun, H.; Zhuang, X. L.; Chang, F.; Wang, J. C.; Chen, X. S. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Mater. Sci. Eng: C Mater. Biol. Appl. 2015, 49, 262-268.
doi: 10.1016/j.msec.2015.01.026
Zhang, W.; Ning, C.; Xu, W.; Hu, H.; Li, M.; Zhao, G.; Ding, J. X.; Chen, X. S. Precision-guided long-acting analgesia by Gel-immobilized bupivacaine-loaded microsphere. Theranostics 2018, 8, 3331-3347.
doi: 10.7150/thno.25276
Zhang, W.; Xu, W.; Ning, C.; Li, M.; Zhao, G.; Jiang, W.; Ding, J. X.; Chen, X. S. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials 2018, 181, 378-391.
doi: 10.1016/j.biomaterials.2018.07.051
Strodtbeck, F. Physiology of wound healing. Newborn Infant Nurs. Rev. 2001, 1, 43-52.
doi: 10.1053/nbin.2001.23176
Kruse, C. R.; Nuutila, K.; Lee, C. C. Y.; Kiwanuka, E.; Singh, M.; Caterson, E. J.; Eriksson, E.; Sorensen, J. A. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015, 23, 456-464.
doi: 10.1111/wrr.12303
Yu, L.; Chang, G. T.; Zhang, H.; Ding, J. D. Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1122-1133.
doi: 10.1002/pola.21876
Shim, M. S.; Lee, H. T.; Shim, W. S. Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. B 2002, 61, 188-196.
doi: 10.1002/(ISSN)1097-4636
Yu, L.; Zhang, Z.; Zhang, H.; Ding, J. D. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules 2009, 10, 1547-1553.
doi: 10.1021/bm900145g
Yu, L.; Zhang, Z.; Zhang, H. A.; Ding, J. D. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 2010, 11, 2169-2178.
doi: 10.1021/bm100549q
Yu, L.; Li, K.; Liu, X.; Chen, C.; Bao, Y. C.; Ci, T. Y.; Chen, Q. H.; Ding, J. D. In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel. J. Pharm. Sci. 2013, 102, 4140-4149.
doi: 10.1002/jps.23735
Zhang, L.; Shen, W. J.; Luan, J. B.; Yang, D. X.; Wei, G.; Yu, L.; Lu, W. Y.; Ding, J. D. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater. 2015, 23, 271-281.
doi: 10.1016/j.actbio.2015.05.005
Bowler, P. G. Wound pathophysiology, infection and therapeutic options. Ann. Med. 2002, 34, 419-427.
doi: 10.1080/078538902321012360
Zanger, P.; Holzer, J.; Schleucher, R.; Scherbaum, H.; Schittek, B.; Gabrysch, S. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human beta-defensin 2. Infect. Immun. 2010, 78, 3112-3117.
doi: 10.1128/IAI.00078-10
Bernard, P. Management of common bacterial infections of the skin. Curr. Opin. Infect. Dis. 2008, 21, 122-128.
doi: 10.1097/QCO.0b013e3282f44c63
Ye, S.; Jiang, L.; Wu, J. M.; Su, C.; Huang, C. B.; Liu, X. F.; Shao, W. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 2018, 10, 5862-5870.
doi: 10.1021/acsami.7b16680
Lee, Y. M.; Kim, S. S.; Park, M. H.; Kim, K. W.; Sung, Y. K.; Kang, I. Y. Beta-chitin-based wound dressing containing silver sulfurdiazine. J. Mater. Sci: Mater. Med. 2000, 11, 817-823.
doi: 10.1023/A:1008961730929
Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res. 2016, 125, 1-7.
doi: 10.1016/j.antiviral.2015.11.003
Gocer, H.; Onger, M. E.; Kuyubasi, N.; Cirakli, A.; Kir, M. C. The effect of teicoplanin on fracture healing: an experimental study. Eklem Hastalik Cerrahisi. 2016, 27, 16-21.
doi: 10.5606/ehc.2016.04
Kester, R. C.; Antrum, R.; Thornton, C. A.; Ramsden, C. H.; Harding, I. A. comparison of teicoplanin versus cephradine plus metronidazole in the prophylaxis of post-operative infection in vascular surgery. J. Hosp. Infect. 1999, 41, 233-243.
doi: 10.1016/S0195-6701(99)90022-1
Rybak, M. J.; Lerner, S. A.; Levine, D. P.; Albrecht, L. M.; Mcneil, P. L.; Thompson, G. A.; Kenny, M. T.; Yuh, L. Teicoplanin pharmacokinetics in intravenous drug-abusers being treated for bacterial-endocarditis. Antimicrob. Agents Chemother. 1991, 35, 696-700.
doi: 10.1128/AAC.35.4.696
Peng, L. H.; Wei, W.; Qi, X. T.; Shan, Y. H.; Zhang, F. J.; Chen, X.; Zhu, Q. Y.; Yu, L.; Liang, W. Q.; Gao, J. Q. Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/β-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol. Pharmaceut. 2013, 10, 3090-3102.
doi: 10.1021/mp400162k
Luan, J. B.; Zhang, Z.; Shen, W. J.; Chen, Y. P.; Yang, X.; Chen, X.; Yu, L.; Sun, J.; Ding, J. D. Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Appl. Mater. Interfaces 2018, 10, 30235-30246.
doi: 10.1021/acsami.8b13548
Faust, S. N.; Levin, M.; Harrison, O. B.; Goldin, R. D.; Lockhart, M. S.; Kondaveeti, S.; Laszik, Z.; Esmon, C. T.; Heyderman, R. S. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. New Engl. J. Med. 2001, 345, 408-416.
doi: 10.1056/NEJM200108093450603
Zhang, C. Z.; Niu, J.; Chong, Y. S.; Huang, Y. F.; Chu, Y.; Xie, S. Y.; Jiang, Z. H.; Peng, L. H. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro & in vivo. Eur. J. Pharm. Biopharm. 2016, 109, 1-13.
doi: 10.1016/j.ejpb.2016.09.005
Van Staden Adu, P.; Heunis, T.; Smith, C.; Deane, S.; Dicks, L. M. Efficacy of lantibiotic treatment of staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrob. Agents Chemother. 2016, 60, 3948-55.
doi: 10.1128/AAC.02938-15
Hrabalikova, M.; Merchan, M.; Ganbold, S.; Sedlarik, V.; Valasek, P.; Saha, P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. J. Polym. Eng. 2015, 35, 319-327.
doi: 10.1515/polyeng-2014-0125
Ricke, S. C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 2003, 82, 632-639.
doi: 10.1093/ps/82.4.632
Xiaoliu Liang , Chunliu Huang , Hui Liu , Hu Chen , Jiabao Shou , Hongwei Cheng , Gang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442
Yunfen Gao , Liying Wang , Chufan Zhou , Yi Zhao , Hai Huang , Jun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
Yue Ren , Kang Li , Yi-Zi Wang , Shao-Peng Zhao , Shu-Min Pan , Haojie Fu , Mengfan Jing , Yaming Wang , Fengyuan Yang , Chuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468
Yaxian Liang , Qingyi Li , Liwei Hu , Ruohan Zhai , Fan Liu , Lin Tan , Xiaofei Wang , Huixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459
Bingyang Lu , Dehui Wang , Junchang Guo , Yang Shen , Qian Feng , Jinlong Yang , Xiao Han , Huali Yu , Luohuizi Li , Jiaxin Liu , Jing Luo , Huan Liu , Zhongwei Zhang , Xu Deng . High-efficiency exudates drainage of anti-adhesion dressings for chronic wound. Chinese Chemical Letters, 2025, 36(4): 110601-. doi: 10.1016/j.cclet.2024.110601
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581
Jiaxu Wang , Jinxie Zhang , Xiuping Wang , Jingying Wang , Lina Chen , Jiahui Cao , Wei Cao , Siyu Liang , Ping Luan , Ke Zheng , Xiao-Kun Ouyang , Li Gao , Xiaowen Ou , Fan Zhang , Meitong Ou , Lin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
Junjie Duan , Dan Chen , Long Chen , Shuying Li , Ting Chen , Dong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Jiliang Deng , Guoliang Shi , Zhihang Ye , Quan Xiao , Xiaoting Zhang , Lei Ren , Fangyu Yang , Miao Wang . Unveiling and swift diagnosing chronic wound healing with artificial intelligence assistance. Chinese Chemical Letters, 2025, 36(3): 110496-. doi: 10.1016/j.cclet.2024.110496
Chao Chen , Wenwen Yu , Guangen Huang , Xuelian Ren , Xiangli Chen , Yixin Li , Shenggui Liang , Mengmeng Xu , Mingyue Zheng , Yaxi Yang , He Huang , Wei Tang , Bing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574
Peizhe Li , Qiaoling Liu , Mengyu Pei , Yuci Gan , Yan Gong , Chuchen Gong , Pei Wang , Mingsong Wang , Xiansong Wang , Da-Peng Yang , Bo Liang , Guangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Saadullah Khattak , Hong-Tao Xu , Jianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210
Yang Xu , Le Ma , Yang Wang , Chunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012