Citation: Wei-Ke Xu, Jing-Yu Tang, Zhang Yuan, Cai-Yun Cai, Xiao-Bin Chen, Shu-Quan Cui, Peng Liu, Lin Yu, Kai-Yong Cai, Jian-Dong Ding. Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 548-559. doi: 10.1007/s10118-019-2212-5 shu

Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing

  • Corresponding author: Lin Yu, yu_lin@fudan.edu.cn
  • Received Date: 17 November 2018
    Revised Date: 9 December 2018
    Available Online: 11 January 2019

  • Bacterial infection is a very troublesome issue in wound treatment, which stimulates exudate formation and severely delays the healing process. Herein, a thermogelling dressing system composed of two triblock copolymers of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) with different block lengths was developed to deliver teicoplanin (TPN), a glycopeptide antibiotic, for cutaneous wound repair. The TPN-loaded thermogel was a free-flowing sol at room temperature and formed a semi-solid gel at physiological temperature. In vitro studies demonstrated that the TPN-loaded thermogel system exhibited desired tissue adhesiveness and realized the sustained release of TPN in a fast-followed-slow manner for over three weeks. Furthermore, a full-thickness excision wound model in Sprague-Dawley (SD) rats was constructed to assess the efficacy of TPN-loaded thermogel formulation. Gross and histopathologic observations implied that treatment with the thermogel formulation reduced inflammation response, promoted disposition of collagen, enhanced angiogenesis, and accelerated wound closure and maturity of SD rats. The combination of the bioactivity of TPN and the acidic nature of the thermogel matrix was responsible for such an enhanced wound healing process. Consequently, the TPN-loaded PLGA-PEG-PLGA thermogel is a good candidate of wound dressing for full-thickness excision wound healing.
  • 加载中
    1. [1]

      Diegelmann, R. F.; Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci-Landmrk. 2004, 9, 283-289.  doi: 10.2741/1184

    2. [2]

      Boateng, J. S.; Matthews, K. H.; Stevens, H. N. E.; Eccleston, G. M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892-2923.  doi: 10.1002/jps.21210

    3. [3]

      Xu, R.; Luo, G. X.; Xia, H. S.; He, W. F.; Zhao, J.; Liu, B.; Tan, J. L.; Zhou, J. Y.; Liu, D. S.; Wang, Y. Z.; Yao, Z. H.; Zhan, R. X.; Yang, S. S.; Wu, J. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 2015, 40, 1-11.  doi: 10.1016/j.biomaterials.2014.10.077

    4. [4]

      Malmsjo, M.; Ingemansson, R.; Martin, R.; Huddleston, E. Negative-pressure wound therapy using gauze or open-cell polyurethane foam: Similar early effects on pressure transduction and tissue contraction in an experimental porcine wound model. Wound Repair Regen. 2009, 17, 200-205.  doi: 10.1111/wrr.2009.17.issue-2

    5. [5]

      Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. Improved mechanical properties of poly(butylene succinate) membrane by co-electrospinning with gelatin. Chinese J. Polym. Sci. 2018, 36, 1063-1069.  doi: 10.1007/s10118-018-2112-0

    6. [6]

      Vargas, E. A.; do Vale Baracho, N. C.; de Brito, J.; de Queiroz, A. A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069-1078.  doi: 10.1016/j.actbio.2009.09.018

    7. [7]

      Bu, Y. Z.; Sun, G. Z.; Zhang, L. C.; Liu, J. H.; Yang, F.; Tang, P. F.; Wu, D. C. POSS-modified PEG adhesives for wound closure. Chinese J. Polym. Sci. 2017, 35, 1231-1242.  doi: 10.1007/s10118-017-1958-x

    8. [8]

      Ishihara, J.; Ishihara, A.; Fukunaga, K.; Sasaki, K.; White, M. J. V.; Briquez, P. S.; Hubbell, J. A. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat. Commun. 2018, 9, 2163.  doi: 10.1038/s41467-018-04525-w

    9. [9]

      Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X.; Guo, B. L. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185-199.  doi: 10.1016/j.biomaterials.2018.08.044

    10. [10]

      Vukovic, J. S.; Babic, M. M.; Antic, K. M.; Miljkovic, M. G.; Peric-Grujic, A. A.; Filipovic, J. M.; Tomic, S. L. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application. Mater. Chem. Phys. 2015, 164, 51-62.  doi: 10.1016/j.matchemphys.2015.08.022

    11. [11]

      Zhao, X.; Guo, B. L.; Wu, H.; Liang, Y. P.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784.  doi: 10.1038/s41467-018-04998-9

    12. [12]

      Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J. X.; Chen, X. S. Antibacterial Hydrogels. Adv. Sci. 2018, 5, 1700527.  doi: 10.1002/advs.v5.5

    13. [13]

      Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239-1250.  doi: 10.1007/s10118-018-2156-1

    14. [14]

      Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z. Y.; Cui, W.; Annabi, N.; Ng, K. W.; Dokmeci, M. R.; Ghaemmaghami, A. M.; Khademhosseini, A. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 2016, 5, 108-118.  doi: 10.1002/adhm.201500005

    15. [15]

      Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z. Y.; Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66-77.  doi: 10.1016/j.actbio.2016.11.017

    16. [16]

      Gong, C. Y.; Wu, Q. J.; Wang, Y. J.; Zhang, D. D.; Luo, F.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013, 34, 6377-6387.  doi: 10.1016/j.biomaterials.2013.05.005

    17. [17]

      Hong, J. H.; Lee, H. J.; Jeong, B. Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of Tonsil-derived mesenchymal stem cells. ACS Appl. Mater. Interfaces 2017, 9, 11568-11576.  doi: 10.1021/acsami.7b02488

    18. [18]

      Yun, E. J.; Yon, B.; Joo, M. K.; Jeong, B. Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel. Biomacromolecules 2012, 13, 1106-1111.  doi: 10.1021/bm2018596

    19. [19]

      Li, X. L.; Fan, R. R.; Tong, A. P.; Yang, M. J.; Deng, J. J.; Zhou, L. X.; Zhang, X. N.; Guo, G. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int. J. Pharm. 2015, 495, 560-571.  doi: 10.1016/j.ijpharm.2015.09.005

    20. [20]

      Cui, S. Q.; Yu, L.; Ding, J. D. Injectable thermogels based on block copolymers of appropriate amphiphilicity. Acta Polymerica Sinica (in Chinese) 2018, 8, 863-881.

    21. [21]

      Fu, S. Z.; Ni, P. Y.; Wang, B. Y.; Chu, B. Y.; Zheng, L.; Luo, F.; Luo, J. C.; Qian, Z. Y. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 2012, 33, 4801-4809.  doi: 10.1016/j.biomaterials.2012.03.040

    22. [22]

      Zhao, X.; Wu, H.; Guo, B. L.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34-47.  doi: 10.1016/j.biomaterials.2017.01.011

    23. [23]

      Zheng, Y.; Cheng, Y.; Chen, J.; Ding, J. X.; Li, M.; Li, C.; Wang, J. C.; Chen, X. S. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 3487-3496.  doi: 10.1021/acsami.6b15245

    24. [24]

      Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41, 4860-4883.  doi: 10.1039/c2cs35078e

    25. [25]

      Zhang, Y. B.; Zhang, J.; Chang, F.; Xu, W. G.; Ding, J. X. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Mater. Sci. Eng: C Mater. Biol. Appl. 2018, 88, 79-87.  doi: 10.1016/j.msec.2018.02.028

    26. [26]

      Chen, Y. P.; Li, Y. Z.; Shen, W. J.; Li, K.; Yu, L.; Chen, Q.; Ding, J. D. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci. Rep. 2016, 6, 31593.  doi: 10.1038/srep31593

    27. [27]

      McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Tang, R.; Liang, K. X.; Achilefu, S.; Kwon, G. S.; Cho, H. Proof-of-concept of polymeric sol-gels in multi-drug delivery and intraoperative image-guided surgery for peritoneal ovarian cancer. Pharm. Res. 2016, 33, 2298-2306.  doi: 10.1007/s11095-016-1968-3

    28. [28]

      Li, K.; Yu, L.; Liu, X.; Chen, C.; Chen, Q.; Ding, J. D. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 2013, 34, 2834-2842.  doi: 10.1016/j.biomaterials.2013.01.013

    29. [29]

      Chen, Y. P.; Luan, J. B.; Shen, W. J.; Lei, K. W.; Yu, L.; Ding, J. D. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl. Mater. Interfaces 2016, 8, 30703-30713.  doi: 10.1021/acsami.6b09415

    30. [30]

      Shen, W. J.; Chen, X. B.; Luan, J. B.; Wang, D. N.; Yu, L.; Ding, J. D. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl. Mater. Interfaces 2017, 9, 40031-40046.  doi: 10.1021/acsami.7b11998

    31. [31]

      Cao, L. P.; Li, Q. L.; Zhang, C.; Wu, H. C.; Yao, L. Q.; Xu, M. D.; Yu, L.; Ding, J. D. Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel. ACS Biomater. Sci. Eng. 2016, 2, 393-402.  doi: 10.1021/acsbiomaterials.5b00516

    32. [32]

      Li, X. Z.; Ding, J. X.; Zhang, Z. Z.; Yang, M.; Yu, J. K.; Wang, J.; Chang, F.; Chen, X. S. Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration. ACS Appl. Mater. Interfaces 2016, 8, 5148-5159.  doi: 10.1021/acsami.5b12212

    33. [33]

      Zhang, Y. B.; Ding, J. X.; Sun, D. K.; Sun, H.; Zhuang, X. L.; Chang, F.; Wang, J. C.; Chen, X. S. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Mater. Sci. Eng: C Mater. Biol. Appl. 2015, 49, 262-268.  doi: 10.1016/j.msec.2015.01.026

    34. [34]

      Zhang, W.; Ning, C.; Xu, W.; Hu, H.; Li, M.; Zhao, G.; Ding, J. X.; Chen, X. S. Precision-guided long-acting analgesia by Gel-immobilized bupivacaine-loaded microsphere. Theranostics 2018, 8, 3331-3347.  doi: 10.7150/thno.25276

    35. [35]

      Zhang, W.; Xu, W.; Ning, C.; Li, M.; Zhao, G.; Jiang, W.; Ding, J. X.; Chen, X. S. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials 2018, 181, 378-391.  doi: 10.1016/j.biomaterials.2018.07.051

    36. [36]

      Strodtbeck, F. Physiology of wound healing. Newborn Infant Nurs. Rev. 2001, 1, 43-52.  doi: 10.1053/nbin.2001.23176

    37. [37]

      Kruse, C. R.; Nuutila, K.; Lee, C. C. Y.; Kiwanuka, E.; Singh, M.; Caterson, E. J.; Eriksson, E.; Sorensen, J. A. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015, 23, 456-464.  doi: 10.1111/wrr.12303

    38. [38]

      Yu, L.; Chang, G. T.; Zhang, H.; Ding, J. D. Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1122-1133.  doi: 10.1002/pola.21876

    39. [39]

      Shim, M. S.; Lee, H. T.; Shim, W. S. Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. B 2002, 61, 188-196.  doi: 10.1002/(ISSN)1097-4636

    40. [40]

      Yu, L.; Zhang, Z.; Zhang, H.; Ding, J. D. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules 2009, 10, 1547-1553.  doi: 10.1021/bm900145g

    41. [41]

      Yu, L.; Zhang, Z.; Zhang, H. A.; Ding, J. D. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 2010, 11, 2169-2178.  doi: 10.1021/bm100549q

    42. [42]

      Yu, L.; Li, K.; Liu, X.; Chen, C.; Bao, Y. C.; Ci, T. Y.; Chen, Q. H.; Ding, J. D. In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel. J. Pharm. Sci. 2013, 102, 4140-4149.  doi: 10.1002/jps.23735

    43. [43]

      Zhang, L.; Shen, W. J.; Luan, J. B.; Yang, D. X.; Wei, G.; Yu, L.; Lu, W. Y.; Ding, J. D. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater. 2015, 23, 271-281.  doi: 10.1016/j.actbio.2015.05.005

    44. [44]

      Bowler, P. G. Wound pathophysiology, infection and therapeutic options. Ann. Med. 2002, 34, 419-427.  doi: 10.1080/078538902321012360

    45. [45]

      Zanger, P.; Holzer, J.; Schleucher, R.; Scherbaum, H.; Schittek, B.; Gabrysch, S. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human beta-defensin 2. Infect. Immun. 2010, 78, 3112-3117.  doi: 10.1128/IAI.00078-10

    46. [46]

      Bernard, P. Management of common bacterial infections of the skin. Curr. Opin. Infect. Dis. 2008, 21, 122-128.  doi: 10.1097/QCO.0b013e3282f44c63

    47. [47]

      Ye, S.; Jiang, L.; Wu, J. M.; Su, C.; Huang, C. B.; Liu, X. F.; Shao, W. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 2018, 10, 5862-5870.  doi: 10.1021/acsami.7b16680

    48. [48]

      Lee, Y. M.; Kim, S. S.; Park, M. H.; Kim, K. W.; Sung, Y. K.; Kang, I. Y. Beta-chitin-based wound dressing containing silver sulfurdiazine. J. Mater. Sci: Mater. Med. 2000, 11, 817-823.  doi: 10.1023/A:1008961730929

    49. [49]

      Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res. 2016, 125, 1-7.  doi: 10.1016/j.antiviral.2015.11.003

    50. [50]

      Gocer, H.; Onger, M. E.; Kuyubasi, N.; Cirakli, A.; Kir, M. C. The effect of teicoplanin on fracture healing: an experimental study. Eklem Hastalik Cerrahisi. 2016, 27, 16-21.  doi: 10.5606/ehc.2016.04

    51. [51]

      Kester, R. C.; Antrum, R.; Thornton, C. A.; Ramsden, C. H.; Harding, I. A. comparison of teicoplanin versus cephradine plus metronidazole in the prophylaxis of post-operative infection in vascular surgery. J. Hosp. Infect. 1999, 41, 233-243.  doi: 10.1016/S0195-6701(99)90022-1

    52. [52]

      Rybak, M. J.; Lerner, S. A.; Levine, D. P.; Albrecht, L. M.; Mcneil, P. L.; Thompson, G. A.; Kenny, M. T.; Yuh, L. Teicoplanin pharmacokinetics in intravenous drug-abusers being treated for bacterial-endocarditis. Antimicrob. Agents Chemother. 1991, 35, 696-700.  doi: 10.1128/AAC.35.4.696

    53. [53]

      Peng, L. H.; Wei, W.; Qi, X. T.; Shan, Y. H.; Zhang, F. J.; Chen, X.; Zhu, Q. Y.; Yu, L.; Liang, W. Q.; Gao, J. Q. Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/β-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol. Pharmaceut. 2013, 10, 3090-3102.  doi: 10.1021/mp400162k

    54. [54]

      Luan, J. B.; Zhang, Z.; Shen, W. J.; Chen, Y. P.; Yang, X.; Chen, X.; Yu, L.; Sun, J.; Ding, J. D. Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Appl. Mater. Interfaces 2018, 10, 30235-30246.  doi: 10.1021/acsami.8b13548

    55. [55]

      Faust, S. N.; Levin, M.; Harrison, O. B.; Goldin, R. D.; Lockhart, M. S.; Kondaveeti, S.; Laszik, Z.; Esmon, C. T.; Heyderman, R. S. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. New Engl. J. Med. 2001, 345, 408-416.  doi: 10.1056/NEJM200108093450603

    56. [56]

      Zhang, C. Z.; Niu, J.; Chong, Y. S.; Huang, Y. F.; Chu, Y.; Xie, S. Y.; Jiang, Z. H.; Peng, L. H. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro & in vivo. Eur. J. Pharm. Biopharm. 2016, 109, 1-13.  doi: 10.1016/j.ejpb.2016.09.005

    57. [57]

      Van Staden Adu, P.; Heunis, T.; Smith, C.; Deane, S.; Dicks, L. M. Efficacy of lantibiotic treatment of staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrob. Agents Chemother. 2016, 60, 3948-55.  doi: 10.1128/AAC.02938-15

    58. [58]

      Hrabalikova, M.; Merchan, M.; Ganbold, S.; Sedlarik, V.; Valasek, P.; Saha, P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. J. Polym. Eng. 2015, 35, 319-327.  doi: 10.1515/polyeng-2014-0125

    59. [59]

      Ricke, S. C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 2003, 82, 632-639.  doi: 10.1093/ps/82.4.632

  • 加载中
    1. [1]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    2. [2]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    3. [3]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    4. [4]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    5. [5]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    6. [6]

      Bingyang LuDehui WangJunchang GuoYang ShenQian FengJinlong YangXiao HanHuali YuLuohuizi LiJiaxin LiuJing LuoHuan LiuZhongwei ZhangXu Deng . High-efficiency exudates drainage of anti-adhesion dressings for chronic wound. Chinese Chemical Letters, 2025, 36(4): 110601-. doi: 10.1016/j.cclet.2024.110601

    7. [7]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    8. [8]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    9. [9]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    10. [10]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    11. [11]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    12. [12]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    13. [13]

      Jiliang DengGuoliang ShiZhihang YeQuan XiaoXiaoting ZhangLei RenFangyu YangMiao Wang . Unveiling and swift diagnosing chronic wound healing with artificial intelligence assistance. Chinese Chemical Letters, 2025, 36(3): 110496-. doi: 10.1016/j.cclet.2024.110496

    14. [14]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    15. [15]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    16. [16]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    17. [17]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    18. [18]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    19. [19]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    20. [20]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

Metrics
  • PDF Downloads(0)
  • Abstract views(738)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return