Citation: Jun-Long Niu, Ke-Ke Chai, Mei-Xing Zeng, Tian-Tian Wang, Chun-Yan Zhang, Shuai Chen, Jing-Kun Xu, Xue-Min Duan. Boc-phenylalanine Grafted Poly(3,4-propylenedioxythiophene) Film for Electrochemically Chiral Recognition of 3,4-Dihydroxyphenylalanine Enantiomers[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 451-461. doi: 10.1007/s10118-019-2211-6 shu

Boc-phenylalanine Grafted Poly(3,4-propylenedioxythiophene) Film for Electrochemically Chiral Recognition of 3,4-Dihydroxyphenylalanine Enantiomers

  • To prepare chiral monomer with single chiral center and higher stereospecificity, a pair of amino-functionalized chiral 3,4-propylenedioxythiophene (ProDOT) derivatives, chiral (3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-3-yl)methyl 2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoate (ProDOT-Boc-Phe), were synthesized. Chiral poly[(3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-3-yl)methyl 2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoate] (PProDOT-Boc-Phe) modified electrodes were synthesized via potentiostatic polymerization of chiral ProDOT-Boc-Phe. Chiral PProDOT-Boc-Phe films displayed good reversible redox activities. The enantioselective recognition between chiral PProDOT-Boc-Phe modified glassy carbon electrodes and DOPA enantiomers was achieved by different electrochemical technologies, including cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). (D)-PProDOT-Boc-Phe and (L)-PProDOT-Boc-Phe showed higher peak current responses toward L-DOPA and D-DOPA, respectively.
  • 加载中
    1. [1]

      Sanganyado, E.; Lu, Z. J.; Fu, Q. G.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527-542.  doi: 10.1016/j.watres.2017.08.003

    2. [2]

      Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, M. E. Chiral drug analysis in forensic chemistry: An overview. Molecules 2018, 23, 262-309.  doi: 10.3390/molecules23020262

    3. [3]

      Pezzoli, G.; Zini, M. Levodopa in Parkinson's disease: From the past to the future. Expert Opin. Pharmaco. 2010, 11, 627-635.  doi: 10.1517/14656561003598919

    4. [4]

      Poewe, W.; Antonini, A.; Zijlmans, J. C.; Burkhard, P. R.; Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong. Clin. Interv. Aging 2010, 5, 229-238.

    5. [5]

      Zhang, Q.; Huang, Y.; Guo, L.; Chen, C.; Guo, D.; Chen, Y.; Fu, Y. DNA-based nanocomposite as electrochemical chiral sensing platform for the enantioselective interaction with quinine and quinidine. New J. Chem. 2014, 38, 4600-4606.  doi: 10.1039/C3NJ01559A

    6. [6]

      Watarai, H.; Kurahashi, Y. Chiral recognition of 2-alkylalcohols with magnetic circular dichroism measurement of porphyrin J-aggregate on silica gel plate. Anal. Chem. 2016, 88, 4619-4623.  doi: 10.1021/acs.analchem.6b00515

    7. [7]

      Balint, A.; Cârje, A. G.; Muntean, D. L.; Imre, S. The Influence of some parameters on chiral separation of ibuprofen by high-performance liquid chromatography and capillary electrophoresis. Acta Med. Mar. 2017, 63, 36-40.

    8. [8]

      Lazzeretti, P. Chiral discrimination in nuclear magnetic resonance spectroscopy. J. Phys.: Condens. Matter 2017, 29, 443001-443094.  doi: 10.1088/1361-648X/aa84d5

    9. [9]

      Schurig, V. Chiral separations using gas chromatography. TrAC, Trends Anal. Chem. 2002, 21, 647-661.  doi: 10.1016/S0165-9936(02)00808-7

    10. [10]

      Prior, A.; Coliva, G.; Jong, G. J.; Somsen, G. W. Chiral capillary electrophoresis with UV-excited fluorescence detection for the enantioselective analysis of 9-fluorenylmethoxycarbonyl-derivatized amino acids. Anal. Bioanal. Chem. 2018, 410, 4979-4990.  doi: 10.1007/s00216-018-1148-x

    11. [11]

      Huang, Y.; Han, Q.; Zhang, Q.; Guo, L.; Guo, D.; Fu, Y. A fast chiral sensing to DOPA enantiomers via poly-lysine films matrixes. Electrochim. Acta 2013, 113, 564-569.  doi: 10.1016/j.electacta.2013.09.123

    12. [12]

      Trojanowicz, M. Enantioselective electrochemical sensors and biosensors: A mini-review. Electrochem. Commun. 2014, 38, 47-52.  doi: 10.1016/j.elecom.2013.10.034

    13. [13]

      Wang, Z.; Xu, J.; Yao, Y.; Zhang, L.; Wen, Y.; Song, H.; Zhu, D. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuators, B 2014, 196, 357-369.  doi: 10.1016/j.snb.2014.02.035

    14. [14]

      Manoli, K.; Magliulo, M.; Torsi, L. Chiral sensor devices for differentiation of enantiomers. Topics Curr. Chem. 2013, 341, 133-176.  doi: 10.1007/978-3-319-03716-5

    15. [15]

      Li, J.; Hu, X.; Wang, J. Electrochemical recognition of chiral molecules with poly(4-bromoaniline) modified gold electrode. Electroanalysis 2013, 25, 1975-1980.  doi: 10.1002/elan.v25.8

    16. [16]

      Zhang, Y.; Lu, B.; Dong, L.; Sun, H.; Hu, D.; Xing, H.; Duan, X.; Chen, S.; Xu, J. Solvent effects on the synthesis, characterization and electrochromic properties of acetic acid modified polyterthiophene. Electrochim. Acta 2016, 220, 122-129.  doi: 10.1016/j.electacta.2016.10.100

    17. [17]

      Caras-Quintero, D.; Bäuerle, P. Synthesis of the first enantiomerically pure and chiral, disubstituted 3,4-ethylenedioxythiophenes (EDOTs) and corresponding stereo- and regioregular PEDOTs. Chem. Commun. 2004, DOI: 10.1039/B400965G  doi: 10.1039/B400965G

    18. [18]

      Jeong, Y. S.; Akagi, K. Control of chirality and electrochromism in copolymer-type chiral PEDOT derivatives by means of electrochemical oxidation and reduction. Macromolecules 2011, 44, 2418-2426.  doi: 10.1021/ma102861t

    19. [19]

      Dong, L.; Zhang, Y.; Duan, X.; Zhu, X.; Sun, H.; Xu, J. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: Mechanism and model of chiral recognition. Anal Chem. 2017, 89, 9695-9702.  doi: 10.1021/acs.analchem.7b01095

    20. [20]

      Dong, L.; Zhang, L.; Duan, X.; Mo, D.; Xu, J.; Zhu, X. Synthesis and characterization of chiral PEDOT enantiomers bearing chiral moieties in side chains: Chiral recognition and its mechanism using electrochemical sensing technology. RSC Adv. 2016, 6, 11536-11545.  doi: 10.1039/C5RA20871H

    21. [21]

      Dong, L.; Lu, B.; Duan, X.; Xu, J.; Hu, D.; Zhang, K.; Sun, H.; Ming, S.; Wang, Z.; Zhen, S. Novel chiral PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers: Synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2238-2251.  doi: 10.1002/pola.v53.19

    22. [22]

      Dong, L. Q.; Hu, D. F.; Duan, X. M.; Wang, Z. P.; Zhang, K. X.; Zhu, X. F.; Sun, H.; Zhang, Y. S.; Xu, J. K. Synthesis and characterization of D-/L-methionine grafted PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers. Chin. J. Polym. Sci. 2016, 34, 563-577.  doi: 10.1007/s10118-016-1772-x

    23. [23]

      Hu, D.; Lu, B.; Duan, X.; Xu, J.; Zhang, L.; Zhang, K., Zhang, S.; Zhen, S. Synthesis of novel chiral l-leucine grafted PEDOT derivatives with excellent electrochromic performances, RSC Adv. 2014, 4, 35597-35608.  doi: 10.1039/C4RA05075D

    24. [24]

      Hu, D.; Lu, B.; Zhang, K.; Sun, X.; Xu, J.; Duan, X.; Dong, L.; Sun, H.; Zhu, X.; Zhen, S. Synthesis of novel chiral L-phenylalanine grafted PEDOT derivatives with electrochemical chiral sensor for 3,4-dihydroxyphenylalanine discrimination. Int. J. Electrochem. Sci. 2015, 10, 3065-3081.

    25. [25]

      Zong, K.; Madrigal, L.; Groenendaal, L. B.; Reynolds, J. R. 3,4-Alkylenedioxy ring formation via double Mitsunobu reactions: an efficient route for the synthesis of 3,4-ethylenedioxythiophene (EDOT) and 3,4-propylenedioxythiophene (ProDOT) derivatives as monomers for electron-rich conducting polymers. Chem. Commun. 2002, DOI: 10.1039/B205907J.  doi: 10.1039/B205907J

    26. [26]

      Kumar, A.; Kumar, A. Single step reductive polymerization of functional 3,4-propylenedioxythiophenes via direct C-H arylation catalyzed by palladium acetate, Polym. Chem. 2010, 1, 286-288.

    27. [27]

      Lu, B.; Lu, Y.; Wen, Y.; Duan, X.; Xu, J.; Chen, S.; Zhang, L. Synthesis, characterization, and vitamin C detection of a novel L-Alanine-modified PEDOT with enhanced chirality. Int. J. Electrochem. Sci. 2013, 8, 2826-2841.

    28. [28]

      Niu, J.; Chen, S.; Zhang, W.; Zhang, W.; Chai, K.; Ye, G.; Li, D.; Zhou, W.; Duan, X.; Xu, J. Supercapacitor properties of nanowire poly((3,4-dihydro-2H-thieno[3,4-b][1,4] dioxepin-3-yl)methanol) free-supporting films. Electrochim. Acta 2018, 283, 488-496.  doi: 10.1016/j.electacta.2018.06.165

    29. [29]

      Lu, B.; Zhang, S.; Qin, L.; Chen, S.; Zhen, S.; Xu, J. Electrosynthesis of poly(3,4-ethylenedithiathiophene) in an ionic liquid and its electrochemistry and electrochromic properties. Electrochim. Acta 2013, 106, 201-208.  doi: 10.1016/j.electacta.2013.05.068

    30. [30]

      Lu, Y.; Wen, Y. P.; Lu, B. Y.; Duan, X. M.; Xu, J. K.; Zhang, L.; Huang, Y. Electrosynthesis and characterization of poly(hydroxy-methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chin. J. Polym. Sci. 2012, 30, 824-836.  doi: 10.1007/s10118-012-1195-2

    31. [31]

      Lu, B.; Zhen, S.; Zhang, S.; Xu, J.; Zhao, G. Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers. Polym. Chem. 2014, 5, 4896-4908.  doi: 10.1039/C4PY00529E

    32. [32]

      Anson, F. C. Application of Potentiostatic Current Integration to the Study of the Adsorption of Cobalt (III)-(Ethylenedinitrilo (tetraacetate) on Mercury Electrodes. Anal. Chem. 1964, 36, 932-934.  doi: 10.1021/ac60210a068

    33. [33]

      Yao, Y.; Zhang, L.; Wen, Y.; Wang, Z.; Zhang, H.; Hu, D.; Xu, J.; Duan, X. Voltammetric determination of catechin using single-walled carbon nanotubes/poly(hydroxymethylated-3,4-ethylenedioxythiophene) composite modified electrode. Ionics 2015, 21, 2927-2936.  doi: 10.1007/s11581-015-1494-z

    34. [34]

      Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. 1974, 52, 355-393.  doi: 10.1016/S0022-0728(74)80448-1

    35. [35]

      Velasco J G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 1997, 9, 880-882.  doi: 10.1002/(ISSN)1521-4109

    36. [36]

      Chen, L.; Chang, F.; Meng, L.; Li, M.; Zhu, Z. A novel electrochemical chiral sensor for 3,4-dihydroxyphenylalanine based on the combination of single-walled carbon nanotubes, sulfuric acid and square wave voltammetry. Analyst 2014, 139, 2243-2248.  doi: 10.1039/C4AN00098F

  • 加载中
    1. [1]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    2. [2]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    3. [3]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    4. [4]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    5. [5]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    6. [6]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    7. [7]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    8. [8]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    9. [9]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    10. [10]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    11. [11]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    12. [12]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    13. [13]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    14. [14]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    15. [15]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    16. [16]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    17. [17]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

Metrics
  • PDF Downloads(0)
  • Abstract views(761)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return