-
[1]
Sanganyado, E.; Lu, Z. J.; Fu, Q. G.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527-542.
doi: 10.1016/j.watres.2017.08.003
-
[2]
Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, M. E. Chiral drug analysis in forensic chemistry: An overview. Molecules 2018, 23, 262-309.
doi: 10.3390/molecules23020262
-
[3]
Pezzoli, G.; Zini, M. Levodopa in Parkinson's disease: From the past to the future. Expert Opin. Pharmaco. 2010, 11, 627-635.
doi: 10.1517/14656561003598919
-
[4]
Poewe, W.; Antonini, A.; Zijlmans, J. C.; Burkhard, P. R.; Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong. Clin. Interv. Aging 2010, 5, 229-238.
-
[5]
Zhang, Q.; Huang, Y.; Guo, L.; Chen, C.; Guo, D.; Chen, Y.; Fu, Y. DNA-based nanocomposite as electrochemical chiral sensing platform for the enantioselective interaction with quinine and quinidine. New J. Chem. 2014, 38, 4600-4606.
doi: 10.1039/C3NJ01559A
-
[6]
Watarai, H.; Kurahashi, Y. Chiral recognition of 2-alkylalcohols with magnetic circular dichroism measurement of porphyrin J-aggregate on silica gel plate. Anal. Chem. 2016, 88, 4619-4623.
doi: 10.1021/acs.analchem.6b00515
-
[7]
Balint, A.; Cârje, A. G.; Muntean, D. L.; Imre, S. The Influence of some parameters on chiral separation of ibuprofen by high-performance liquid chromatography and capillary electrophoresis. Acta Med. Mar. 2017, 63, 36-40.
-
[8]
Lazzeretti, P. Chiral discrimination in nuclear magnetic resonance spectroscopy. J. Phys.: Condens. Matter 2017, 29, 443001-443094.
doi: 10.1088/1361-648X/aa84d5
-
[9]
Schurig, V. Chiral separations using gas chromatography. TrAC, Trends Anal. Chem. 2002, 21, 647-661.
doi: 10.1016/S0165-9936(02)00808-7
-
[10]
Prior, A.; Coliva, G.; Jong, G. J.; Somsen, G. W. Chiral capillary electrophoresis with UV-excited fluorescence detection for the enantioselective analysis of 9-fluorenylmethoxycarbonyl-derivatized amino acids. Anal. Bioanal. Chem. 2018, 410, 4979-4990.
doi: 10.1007/s00216-018-1148-x
-
[11]
Huang, Y.; Han, Q.; Zhang, Q.; Guo, L.; Guo, D.; Fu, Y. A fast chiral sensing to DOPA enantiomers via poly-lysine films matrixes. Electrochim. Acta 2013, 113, 564-569.
doi: 10.1016/j.electacta.2013.09.123
-
[12]
Trojanowicz, M. Enantioselective electrochemical sensors and biosensors: A mini-review. Electrochem. Commun. 2014, 38, 47-52.
doi: 10.1016/j.elecom.2013.10.034
-
[13]
Wang, Z.; Xu, J.; Yao, Y.; Zhang, L.; Wen, Y.; Song, H.; Zhu, D. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuators, B 2014, 196, 357-369.
doi: 10.1016/j.snb.2014.02.035
-
[14]
Manoli, K.; Magliulo, M.; Torsi, L. Chiral sensor devices for differentiation of enantiomers. Topics Curr. Chem. 2013, 341, 133-176.
doi: 10.1007/978-3-319-03716-5
-
[15]
Li, J.; Hu, X.; Wang, J. Electrochemical recognition of chiral molecules with poly(4-bromoaniline) modified gold electrode. Electroanalysis 2013, 25, 1975-1980.
doi: 10.1002/elan.v25.8
-
[16]
Zhang, Y.; Lu, B.; Dong, L.; Sun, H.; Hu, D.; Xing, H.; Duan, X.; Chen, S.; Xu, J. Solvent effects on the synthesis, characterization and electrochromic properties of acetic acid modified polyterthiophene. Electrochim. Acta 2016, 220, 122-129.
doi: 10.1016/j.electacta.2016.10.100
-
[17]
Caras-Quintero, D.; Bäuerle, P. Synthesis of the first enantiomerically pure and chiral, disubstituted 3,4-ethylenedioxythiophenes (EDOTs) and corresponding stereo- and regioregular PEDOTs. Chem. Commun. 2004, DOI: 10.1039/B400965G
doi: 10.1039/B400965G
-
[18]
Jeong, Y. S.; Akagi, K. Control of chirality and electrochromism in copolymer-type chiral PEDOT derivatives by means of electrochemical oxidation and reduction. Macromolecules 2011, 44, 2418-2426.
doi: 10.1021/ma102861t
-
[19]
Dong, L.; Zhang, Y.; Duan, X.; Zhu, X.; Sun, H.; Xu, J. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: Mechanism and model of chiral recognition. Anal Chem. 2017, 89, 9695-9702.
doi: 10.1021/acs.analchem.7b01095
-
[20]
Dong, L.; Zhang, L.; Duan, X.; Mo, D.; Xu, J.; Zhu, X. Synthesis and characterization of chiral PEDOT enantiomers bearing chiral moieties in side chains: Chiral recognition and its mechanism using electrochemical sensing technology. RSC Adv. 2016, 6, 11536-11545.
doi: 10.1039/C5RA20871H
-
[21]
Dong, L.; Lu, B.; Duan, X.; Xu, J.; Hu, D.; Zhang, K.; Sun, H.; Ming, S.; Wang, Z.; Zhen, S. Novel chiral PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers: Synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2238-2251.
doi: 10.1002/pola.v53.19
-
[22]
Dong, L. Q.; Hu, D. F.; Duan, X. M.; Wang, Z. P.; Zhang, K. X.; Zhu, X. F.; Sun, H.; Zhang, Y. S.; Xu, J. K. Synthesis and characterization of D-/L-methionine grafted PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers. Chin. J. Polym. Sci. 2016, 34, 563-577.
doi: 10.1007/s10118-016-1772-x
-
[23]
Hu, D.; Lu, B.; Duan, X.; Xu, J.; Zhang, L.; Zhang, K., Zhang, S.; Zhen, S. Synthesis of novel chiral l-leucine grafted PEDOT derivatives with excellent electrochromic performances, RSC Adv. 2014, 4, 35597-35608.
doi: 10.1039/C4RA05075D
-
[24]
Hu, D.; Lu, B.; Zhang, K.; Sun, X.; Xu, J.; Duan, X.; Dong, L.; Sun, H.; Zhu, X.; Zhen, S. Synthesis of novel chiral L-phenylalanine grafted PEDOT derivatives with electrochemical chiral sensor for 3,4-dihydroxyphenylalanine discrimination. Int. J. Electrochem. Sci. 2015, 10, 3065-3081.
-
[25]
Zong, K.; Madrigal, L.; Groenendaal, L. B.; Reynolds, J. R. 3,4-Alkylenedioxy ring formation via double Mitsunobu reactions: an efficient route for the synthesis of 3,4-ethylenedioxythiophene (EDOT) and 3,4-propylenedioxythiophene (ProDOT) derivatives as monomers for electron-rich conducting polymers. Chem. Commun. 2002, DOI: 10.1039/B205907J.
doi: 10.1039/B205907J
-
[26]
Kumar, A.; Kumar, A. Single step reductive polymerization of functional 3,4-propylenedioxythiophenes via direct C-H arylation catalyzed by palladium acetate, Polym. Chem. 2010, 1, 286-288.
-
[27]
Lu, B.; Lu, Y.; Wen, Y.; Duan, X.; Xu, J.; Chen, S.; Zhang, L. Synthesis, characterization, and vitamin C detection of a novel L-Alanine-modified PEDOT with enhanced chirality. Int. J. Electrochem. Sci. 2013, 8, 2826-2841.
-
[28]
Niu, J.; Chen, S.; Zhang, W.; Zhang, W.; Chai, K.; Ye, G.; Li, D.; Zhou, W.; Duan, X.; Xu, J. Supercapacitor properties of nanowire poly((3,4-dihydro-2H-thieno[3,4-b][1,4] dioxepin-3-yl)methanol) free-supporting films. Electrochim. Acta 2018, 283, 488-496.
doi: 10.1016/j.electacta.2018.06.165
-
[29]
Lu, B.; Zhang, S.; Qin, L.; Chen, S.; Zhen, S.; Xu, J. Electrosynthesis of poly(3,4-ethylenedithiathiophene) in an ionic liquid and its electrochemistry and electrochromic properties. Electrochim. Acta 2013, 106, 201-208.
doi: 10.1016/j.electacta.2013.05.068
-
[30]
Lu, Y.; Wen, Y. P.; Lu, B. Y.; Duan, X. M.; Xu, J. K.; Zhang, L.; Huang, Y. Electrosynthesis and characterization of poly(hydroxy-methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chin. J. Polym. Sci. 2012, 30, 824-836.
doi: 10.1007/s10118-012-1195-2
-
[31]
Lu, B.; Zhen, S.; Zhang, S.; Xu, J.; Zhao, G. Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers. Polym. Chem. 2014, 5, 4896-4908.
doi: 10.1039/C4PY00529E
-
[32]
Anson, F. C. Application of Potentiostatic Current Integration to the Study of the Adsorption of Cobalt (III)-(Ethylenedinitrilo (tetraacetate) on Mercury Electrodes. Anal. Chem. 1964, 36, 932-934.
doi: 10.1021/ac60210a068
-
[33]
Yao, Y.; Zhang, L.; Wen, Y.; Wang, Z.; Zhang, H.; Hu, D.; Xu, J.; Duan, X. Voltammetric determination of catechin using single-walled carbon nanotubes/poly(hydroxymethylated-3,4-ethylenedioxythiophene) composite modified electrode. Ionics 2015, 21, 2927-2936.
doi: 10.1007/s11581-015-1494-z
-
[34]
Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. 1974, 52, 355-393.
doi: 10.1016/S0022-0728(74)80448-1
-
[35]
Velasco J G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 1997, 9, 880-882.
doi: 10.1002/(ISSN)1521-4109
-
[36]
Chen, L.; Chang, F.; Meng, L.; Li, M.; Zhu, Z. A novel electrochemical chiral sensor for 3,4-dihydroxyphenylalanine based on the combination of single-walled carbon nanotubes, sulfuric acid and square wave voltammetry. Analyst 2014, 139, 2243-2248.
doi: 10.1039/C4AN00098F