Citation: Bin Chen, Feng Wang, Jing-Yu Li, Jia-Lu Zhang, Yan Zhang, Hai-Chao Zhao. Synthesis of Eugenol Bio-based Reactive Epoxy Diluent and Study on the Curing Kinetics and Properties of the Epoxy Resin System[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 500-508. doi: 10.1007/s10118-019-2210-7 shu

Synthesis of Eugenol Bio-based Reactive Epoxy Diluent and Study on the Curing Kinetics and Properties of the Epoxy Resin System

  • Corresponding author: Bin Chen,  Hai-Chao Zhao, zhaohaichao@nimte.ac.cn
  • Received Date: 6 September 2018
    Revised Date: 8 December 2018
    Accepted Date: 1 January 2018
    Available Online: 11 January 2019

  • In this study, monoglycidyl silyl etherated eugenol (GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR). GSE existed as a potential bio-based reactive diluent for petroleum-based epoxy resin. The curing kinetics of EP/HHPA/GSE system was studied by non-isothermal DSC method. The kinetics parameters were calculated by using the Kissinger model, Crane model, Ozawa model, and β-T (temperature-heating rate) extrapolation, respectively. In addition, the effects of GSE on the thermo-mechanical properties and thermal stability of EP/HHPA/GSE systems were studied, indicating that GSE can effectively improve the toughness and thermal decomposition temperature of the epoxy system.
  • 加载中
    1. [1]

      Wang, X.; Kalali, E. N.; Wang, D. Y. Renewable cardanol-based surfactant modified layered double hydroxide as a flame retardant for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3, 3281-3290.  doi: 10.1021/acssuschemeng.5b00871

    2. [2]

      Yuan, Y. C.; Ye, Y. P.; Zhi, R. M.; Chen, H. B.; Wu, J. S.; Qiu, Z. M.; Qin, S. X.; Yang, G. C. Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy-mercaptan healing agent. Smart Mater. Struc. 2011, 20, 15-24.

    3. [3]

      Yuan, Y. C.; Rong, M. Z.; Zhang, M. Q.; Chen, J.; Yang, G. C.; Li, X. M. Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules. 2008, 41, 5197-5202.  doi: 10.1021/ma800028d

    4. [4]

      Tian, Q.; Rong, M. Z.; Zhang, M. Q.; Yuan, Y. C. Synthesis and characterization of epoxy with improved thermal remendability based on Diels-Alder reaction. Polym. Int. 2010, 59, 1339-1345.  doi: 10.1002/pi.v59:10

    5. [5]

      Guo, Y. K.; Li, H.; Zhao, P. X.; Wang, X. F.; Astruc, D.; Shuai, M. B. Thermo-reversible MWCNTs/epoxy polymer for use in self-healing and recyclable epoxy adhesive. Chinese J. Polym. Sci. 2017, 35, 728-738.  doi: 10.1007/s10118-017-1920-y

    6. [6]

      Chen, Z. K.; Yang, G.; Yang, J. P.; Fu, S. Y.; Ye, L.; Huang, Y. G. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by -butyl glycidyl ether. Polymer. 2009, 50, 1316-1323.  doi: 10.1016/j.polymer.2008.12.048

    7. [7]

      Pineda, A. F. E.; Garcia, F. G.; Simões, A. Z.; Silva, E. L. D. Mechanical properties, water absorption and adhesive properties of diepoxy aliphatic diluent-modified DGEBA/Cycloaliphatic amine networks on 316 L stainless steel. Int. J. Adhes . Adhes. 2016, 68, 205-211.  doi: 10.1016/j.ijadhadh.2016.02.011

    8. [8]

      Solodilov, V. I.; Gorbatkina, Y. A.; Kuperman, A. M. The effect of an active diluent on the properties of epoxy resin and unidirectional carbon-fiber-reinforced plastics. Mech. Compos. Mater. 2003, 39, 493-502.  doi: 10.1023/B:MOCM.0000010621.05492.bf

    9. [9]

      Chen, J.; Nie, X.; Liu, Z. S.; Mi, Z.; Zhou, Y. H. Synthesis and application of polyepoxide cardanol glycidyl ether as novel bio-based polyepoxide reactive diluent for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3, 1164-1171..  doi: 10.1021/acssuschemeng.5b00095

    10. [10]

      Ding, J. H.; Rahman, O. U.; Wang, Q.l.; Peng, W. J; Y, H. B. Sustainable graphene suspensions: a reactive diluent for epoxy composite valorization. ACS Sustain. Chem. Eng. 2017, 5, 7792-7799.  doi: 10.1021/acssuschemeng.7b01282

    11. [11]

      Heuts, M. P. J.; Jones, L. Polymerization of a reactive diluent in the presence of an epoxy-amine material, and coating compositions prepared thereby. 2003, U.S. PCT, 006969.

    12. [12]

      Mustata, F.; Rosu, D.; Cascaval, C. N. Rheological testing of p-tert-butylphenol epoxy-acrylic resin in the presence of reactive diluents. Polym. Test. 2000, 19, 927-938.  doi: 10.1016/S0142-9418(99)00064-1

    13. [13]

      Wei, X. y.; Zhao, B. X.; Shang, Y. Z.; Cheng, Y. R. Rigid biphenyl-contained epoxy resins with improved thermal resistant properties. Chinese J. Polym. Sci. 2017, 35, 1428-1435.  doi: 10.1007/s10118-017-1975-9

    14. [14]

      Lv, J. B.; Ma, J. Z.; Cheng, K.; Chen, C.; Hu, J. H.; Zeng, Ke; Y. G. Insights into phthalonitrile/epoxy blends modification system from non-competitive cure system based on alicyclic anhydride. Chinese J. Polym. Sci. 2017, 35, 1561-1571.  doi: 10.1007/s10118-017-1992-8

    15. [15]

      Guan, F. L.; An, F.; Yang, J.; Li, X. f.; Li, X. H.; Yu, Z. Z. Fiber-reinforced three-dimensional graphene aerogels for electrically conductive epoxy composites with enhanced mechanical properties. Chinese J. Polym. Sci. 2017, 35, 1381-1390.  doi: 10.1007/s10118-017-1972-z

    16. [16]

      Das, G.; Karak, N. Epoxidized Mesua ferrea L. seed oil-based reactive diluent for BPA epoxy resin and their green nanocomposites. Prog. Org. Coat. 2009, 66, 59-64.  doi: 10.1016/j.porgcoat.2009.06.001

    17. [17]

      Morinaga; Hisatoyo; Kataoka; Mei; Masuda; Junya; Kiyokawa; Yoshihide, Synthesis of partially biobased polymer-bearing reactive epoxy groups in;the side chains by radical copolymerization of limonene oxide with methyl acrylate. Polym. Bull. 2013, 70, 1113-1123.  doi: 10.1007/s00289-012-0890-z

    18. [18]

      Ménard, R.; Negrell, C.; Ferry, L.; Sonnier, R.; David, G. Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches. Polym. Degrad. Stabil. 2015, 120, 300-312.  doi: 10.1016/j.polymdegradstab.2015.07.015

    19. [19]

      Morinaga, H.; Kiyokawa, Y.; Fujikawa, R.; Nagai, D.; Morikawa, H. Partially biobased polyamphiphile-bearing reactive epoxy groups in the side chains and its application to the hydrogel. Polym. Bull. 2014, 71, 2421-2435.  doi: 10.1007/s00289-014-1199-x

    20. [20]

      Phalak, G.; Patil, D.; Vignesh, V.; Mhaske, S. Development of tri-functional biobased reactive diluent from ricinoleic acid for UV curable coating application. Ind. Crop. Pro. 2018, 119, 9-21.  doi: 10.1016/j.indcrop.2018.04.001

    21. [21]

      Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32, 1099-1110.  doi: 10.1007/s10118-014-1487-9

    22. [22]

      Wang, J. G.; L, X. Q.; Zhu, J. From Furan to High quality bio-based poly(ethylene furandicarboxylate). Chinese J. Polym. Sci. 2018, 36, 720-727.  doi: 10.1007/s10118-018-2092-0

    23. [23]

      Sahoo, S. K.; Khandelwal, V.; Manik, G. Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym. Advan. Technol. 2017. DOI: 10.1002/pat.4166.  doi: 10.1002/pat.4166

    24. [24]

      Sahoo, S. K.; Mohanty, S.; Nayak, S. K. Synthesis and characterization of bio-based epoxy blends from renewable resource based epoxidized soybean oil as reactive diluent. Chinese J. Polym. Sci. 2014, 33, 137-152.

    25. [25]

      Ding, J. H.; Peng, W. J.; Luo, T.; Yu, H. B., Study on the curing reaction kinetics of a novel epoxy system. RSC Adv. 2017, 7, 6981-6987.  doi: 10.1039/C6RA25120J

    26. [26]

      Shin, E.; Ju, S. W.; An, L.; Ahn, E.; Ahn, J. S.; Kim, B. S.; Ahn, B. K., Bioinspired catecholic primers for rigid and ductile dental resin composites. ACS Appl. Mater. Inter. 2018, 10, 1520-1527.  doi: 10.1021/acsami.7b14679

    27. [27]

      Qin, J. L.; Liu, H. Z.; Zhang, P.; Wolcott, M.; Zhang, J. W. Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym. Int. 2014, 63, 760-765.  doi: 10.1002/pi.2014.63.issue-4

    28. [28]

      Faye, I.; Decostanzi, M.; Ecochard, Y.; Caillol, S. Eugenol bio-based epoxy thermosets: From cloves to applied materials. Green Chem. 2017, 19, 5236-5242.  doi: 10.1039/C7GC02322G

    29. [29]

      Thirukumaran, P.; Shakila, A.; Muthusamy, S. Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv. 2014, 4, 7959-7966.  doi: 10.1039/c3ra46582a

    30. [30]

      Meher, G.; Chakraborty, H. Influence of eugenol on the organization and dynamics of lipid membranes: A phase-dependent study. Langmuir 2018, 34, 2344-2351.  doi: 10.1021/acs.langmuir.7b03595

    31. [31]

      Deng, J. p.; Yang, B.; Chen, C.; Liang, J. Y. Renewable eugenol-based polymeric oil-absorbent microspheres: Preparation and oil absorption ability. ACS Sustain. Chem. Eng. 2015, 3, 599-605.  doi: 10.1021/sc500724e

    32. [32]

      Miao, J. T.; Yuan, L.; Guan, Q. B.; Liang, G. Z.; Gu, A. J. Biobased heat resistant epoxy resin with extremely high biomass content from 2,5-furandicarboxylic acid and eugenol. ACS Sustain. Chem. Eng. 2017, 5, 7003-7011.  doi: 10.1021/acssuschemeng.7b01222

  • 加载中
    1. [1]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    2. [2]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    3. [3]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    4. [4]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    5. [5]

      Haining PengHuijun LiuChengzong LiYingfu LiQizhi ChenTao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    8. [8]

      Dan OuyangHuan HuangYanting HeJiajing ChenJiali LinZhuling ChenZongwei CaiZian Lin . Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides. Chinese Chemical Letters, 2024, 35(5): 108885-. doi: 10.1016/j.cclet.2023.108885

    9. [9]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    10. [10]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    11. [11]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    12. [12]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    13. [13]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    14. [14]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    15. [15]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    16. [16]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    17. [17]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    18. [18]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    19. [19]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    20. [20]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

Metrics
  • PDF Downloads(0)
  • Abstract views(730)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return