Citation: Zhen Zhang, Zhong-Yi Cai, Yu-Peng Pan, Yan-Li Dou, Shi-Hui Li, Dong-Mei Cui. Substituent Effects of Pyridyl-methylene Cyclopentadienyl Rare-earth Metal Complexes on Styrene Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(6): 570-577. doi: 10.1007/s10118-019-2209-0 shu

Substituent Effects of Pyridyl-methylene Cyclopentadienyl Rare-earth Metal Complexes on Styrene Polymerization

  • Salt metathesis reactions between pyridyl-methylene-cyclopentadienyl lithium salt and LnCl3 followed by the addition of two equivalents of LiCH2SiMe3 afforded a series of constrained-geometry-configuration rare-earth metal bis(alkyl) complexes (Cp′CH2-Py)Ln(CH2SiMe3)2(THF)n (Py = C5H4N, Cp′ = C5H4 (Cp), Ln = Sc, n = 0 (1); Cp′ = C9H6 (Ind), Ln = Sc, n = 0 (2); Cp′ = 3-Me3Si-C9H5 (3-Me3Si-Ind), Ln = Sc, n = 0 (3a), Ln = Lu (3b), Y (3c), n = 1; Cp′ = 2,7-(tBu)2C13H8 (2,7-(tBu)2-Flu), Ln = Sc (4a), n = 0, Ln = Lu (4b), Y (4c), n = 1) in moderate to good yields, which were characterized by NMR spectroscopy and single-crystal X-ray diffraction (for complex 3a). In the presence of [Ph3C][B(C6F5)4] and AliBu3, these complexes displayed different performances towards styrene polymerization. Rare-earth metal bis(alkyl) precursors bearing Cp, Ind, and 3-Me3Si-Ind segments exhibited very low catalytic activity to afford syndiotactic polystyrene. All electron-donating tBu substituted complexes 4a, 4b, and 4c showed very high activity and perfect syndiotactivity (rrrr > 99%), producing high molecular weight polystyrene (up to 54.1 × 104) with relatively narrow molecular distribution (PDI = 1.28−2.49).
  • 加载中
    1. [1]

      Rodrigues, A. S.; Kirillov, E.; Carpentier, J. F. Group 3 and 4 single-site catalysts for stereospecific polymerization of styrene. Coordin. Chem. Rev. 2008, 252, 2115-2136.  doi: 10.1016/j.ccr.2007.12.015

    2. [2]

      Zinck, P.; Bonnet, F.; Mortreux, A.; Visseaux, M. Functionalization of syndiotactic polystyrene. Prog. Polym. Sci. 2009, 34, 369-392.  doi: 10.1016/j.progpolymsci.2008.10.003

    3. [3]

      Huang, J.; Liu, Z.; Cui, D.; Liu, X. Precisely Controlled polymerization of styrene and conjugated dienes by group 3 single-site catalysts. Chemcatchem 2018, 10, 42-61.  doi: 10.1002/cctc.v10.1

    4. [4]

      Laur, E.; Kirillov, E.; Carpentier, J. F. Engineering of syndiotactic and isotactic polystyrene-based copolymers via stereoselective catalytic polymerization. Molecules 2017, 22, 594.  doi: 10.3390/molecules22040594

    5. [5]

      Jaymand, M. Recent progress in the chemical modification of syndiotactic polystyrene. Polym. Chem-Uk. 2014, 5, 2663-2690.  doi: 10.1039/C3PY01551C

    6. [6]

      Schellenberg, J.; Leder, H. J., Syndiotactic polystyrene: Process and applications. Adv. Polym. Tech. 2006, 25, 141-151.  doi: 10.1002/(ISSN)1098-2329

    7. [7]

      Schellenberg, J.; Tomotsu, N. Syndiotactic polystyrene catalysts and polymerization. Prog. Polym. Sci. 2002, 27, 1925-1982.  doi: 10.1016/S0079-6700(02)00026-6

    8. [8]

      Ishihara, N.; Seimiya, T.; Kuramoto, M.; Uoi, M. Crystalline syndiotactic polystyrene. Macromolecules 1986, 19, 2464-2465.  doi: 10.1021/ma00163a027

    9. [9]

      Ishihara, N.; Kuramoto, M.; Uoi, M. Stereospecific polymerization of styrene giving the syndiotactic polymer. Macromolecules 1988, 21, 3356-3360.  doi: 10.1021/ma00190a003

    10. [10]

      Nomura, K. Half-titanocenes containing anionic ancillary donor ligands: Effective catalyst precursors for ethylene/styrene copolymerization. Catalysts 2013, 3, 157.  doi: 10.3390/catal3010157

    11. [11]

      Xu, C.; Chen, Z.; Ji, G.; Sun, X. L.; Li, J. F.; Tang, Y. (ArO)TiR3 complexes for highly syndiospecific styrene polymerization. J. Mol. Catal. A-chem. 2014, 383, 77-82.

    12. [12]

      Luo, Y. J.; Baldamus, J.; Hou, Z. M. Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene-ethylene copolymerization: Unprecedented incorporation of syndiotactic styrene-styrene sequences in styrene-ethylene copolymers. J. Am. Chem. Soc. 2004, 126, 13910-13911.  doi: 10.1021/ja046063p

    13. [13]

      Kirillov, E.; Lehmann, C. W.; Razavi, A.; Carpentier, J. F. Highly syndiospecific polymerization of styrene catalyzed by allyl lanthanide complexes. J. Am. Chem. Soc. 2004, 126, 12240-12241.  doi: 10.1021/ja0455695

    14. [14]

      Louyriac, E.; Laur, E.; Welle, A.; Vantomme, A.; Miserque, O.; Brusson, J. M.; Maron, L.; Carpentier, J. F.; Kirillov, E. Experimental and computational investigations on highly syndioselective styrene-ethylene copolymerization catalyzed by allyl ansa-lanthanidocenes. Macromolecules 2017, 50, 9577-9588.  doi: 10.1021/acs.macromol.7b01969

    15. [15]

      Jian, Z. B.; Cui, D. M.; Hou, Z. M. Rare-earth-metal-hydrocarbyl complexes bearing linked cyclopentadienyl or fluorenyl ligands: Synthesis, catalyzed styrene polymerization, and structure-reactivity relationship. Chem. Eur. J. 2012, 18, 2674-2684.  doi: 10.1002/chem.201102682

    16. [16]

      Liu, D. T.; Luo, Y. J.; Gao, W.; Cui, D. M. Stereoselective polymerization of styrene with cationic scandium precursors bearing quinolyl aniline ligands. Organometallics 2010, 29, 1916-1923.  doi: 10.1021/om1000265

    17. [17]

      Jian, Z.; Tang, S.; Cui, D. A lutetium allyl complex that bears a pyridyl-functionalized cyclopentadienyl ligand: Dural catalysis on highly syndiospecific and cis-1,4-selective (co)polymerizations of styrene and butadiene. Chem. Eur. J. 2010, 16, 14007-14015.  doi: 10.1002/chem.v16.47

    18. [18]

      Pan, Y. P.; Rong, W. F.; Jian, Z. B.; Cui, D. M. Ligands dominate highly syndioselective polymerization of styrene by using constrained-geometry-configuration rare-earth metal precursors. Macromolecules 2012, 45, 1248-1253.  doi: 10.1021/ma202558g

    19. [19]

      Lin, F.; Wang, X. B.; Pan, Y. P.; Wang, M. Y.; Liu, B.; Luo, Y.; Cui, D. M. Nature of the entire range of rare earth metal-based cationic catalysts for highly active and syndioselective styrene polymerization. ACS. Catal. 2016, 6, 176-185.  doi: 10.1021/acscatal.5b02334

    20. [20]

      Luo, Y. J.; Chen, J. Synthesis, characterization and reactivity of rare-earth metal amide complexes supported by pyrrolyl-substituted cyclopentadienyl ligand. J. Organomet. Chem. 2018, 863, 10-14.  doi: 10.1016/j.jorganchem.2018.03.029

    21. [21]

      Lei, Y. L.; Wang, Y. B.; Luo, Y. J. Synthesis, characterization, and styrene polymerization catalysis of pyridyl-functionalized indenyl rare earth metal bis(silylamide) complexes. J. Organomet. Chem. 2013, 738, 24-28.  doi: 10.1016/j.jorganchem.2013.04.014

    22. [22]

      Fang, X. D.; Li, X. F.; Hou, Z. M.; Assoud, J. L.; Zhao, R. 1,2-Azaborolyl-ligated half-sandwich complexes of scandium(iii) and lutetium(III): Synthesis, structures, and syndiotactic polymerization of styrene. Organometallics 2009, 28, 517-522.  doi: 10.1021/om800734v

    23. [23]

      Peng, D. Q.; Yan, X. W.; Zhang, S. W.; Li, X. F. Syndiotactic polymerization of styrene and copolymerization with ethylene catalyzed by chiral half-sandwich rare-earth metal dialkyl complexes. Chinese J. Polym. Sci. 2018, 36, 222-230.  doi: 10.1007/s10118-018-2060-8

    24. [24]

      Jaroschik, F.; Shima, T.; Li, X. F.; Mori, K.; Ricard, L.; Le Goff, X. F.; Nief, F.; Hou, Z. M. Synthesis, characterization, and reactivity of mono(phospholyl)lanthanoid(III) bis(dimethylaminobenzyl) complexes. Organometallics 2007, 26, 5654-5660.  doi: 10.1021/om7005936

    25. [25]

      Xu, X.; Chen, Y. F.; Sun, J. Indenyl Abstraction versus Alkyl Abstraction of (Indenyl)ScR2(THF) by Ph3CB(C6F5)(4): A specific and syndiospecific styrene polymerization. Chem. Eur. J. 2009, 15, 846-850.  doi: 10.1002/chem.200802220

    26. [26]

      Li, S.; Liu, D.; Wang, Z.; Cui, D. Development of group 3 catalysts for alternating copolymerization of ethylene and styrene derivatives. ACS. Catal. 2018, 6086-6093.

    27. [27]

      Wang, Z.; Wang, M.; Liu, J.; Liu, D.; Cui, D. Rapid syndiospecific (co) polymerization of fluorostyrene with high monomer conversion. Chem. Eur. J. 2017, 23, 18151-18155.  doi: 10.1002/chem.201704584

    28. [28]

      Liu, D. T.; Wang, M. Y.; Wang, Z. C.; Wu, C. J.; Pan, Y. P.; Cui, D. M. Stereoselective copolymerization of unprotected polar and nonpolar stryenes by an yttrium precursor: Control of polar-group distribution and mechanism. Angew. Chem. Int. Ed. 2017, 56, 2714-2719.  doi: 10.1002/anie.201611066

    29. [29]

      Liu, B.; Li, S.; Wang, M.; Cui, D. Coordination polymerization of renewable 3-methylenecyclopentene with rare-earth-metal precursors. Angew. Chem. Int. Ed. 2017, 56, 4560-4564.  doi: 10.1002/anie.201700546

    30. [30]

      Lin, F.; Wu, C. J.; Cui, D. M. Synthesis and characterization of crystalline styrene-b-(ethylene-co-butylene)-b-styrene triblock copolymers. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 1243-1249.  doi: 10.1002/pola.v55.7

    31. [31]

      Lin, F.; Wang, M. Y.; Pan, Y. P.; Tang, T.; Cui, D. M.; Liu, B. Sequence and regularity controlled coordination copolymerization of butadiene and styrene: Strategy and mechanism. Macromolecules 2017, 50, 849-856.  doi: 10.1021/acs.macromol.6b02413

    32. [32]

      Zhang, Z.; Dou, Y.; Li, S.; Cui, D. Highly syndioselective coordination (co)polymerization of isopropenylstyrene. Polym. Chem-UK. 2018, 9, 4476-4482.  doi: 10.1039/C8PY00625C

    33. [33]

      Lin, F.; Liu, Z. H.; Wang, T. T.; Cui, D. M. Highly 2,3-selective polymerization of phenylallene and its derivatives with rare-earth metal catalysts: From amorphous to crystalline products. Angew. Chem. Int. Ed. 2017, 56, 14653-14657.  doi: 10.1002/anie.201707601

    34. [34]

      Wang, Z. C.; Liu, D. T.; Cui, D. M. Statistically syndioselective coordination (co)polymerization of 4-methylthiostyrene. Macromolecules 2016, 49 (3), 781-787.  doi: 10.1021/acs.macromol.5b02263

    35. [35]

      Pan, Y.; Xie, H.; Cui D. Novel Constrained-geometry- configuration rare-earth metal precursors to obtain styrene-styrene copolymers. Chinese J. Chem. 2012, 29, 1389-1393.

    36. [36]

      Li, S. H.; Cui, D. M.; Li, D. F.; Hou, Z. M. Highly 3,4-selective polymerization of isoprene with NPN ligand stabilized rare-earth metal bis(alkyl)s. Structures and performances. Organometallics 2009, 28, 4814-4822.  doi: 10.1021/om900261n

    37. [37]

      Zimmermann, M.; Anwander, R. Homoleptic rare-earth metal complexes containing Ln-C σ-bonds. Chem. Rev. 2010, 110, 6194-6259.  doi: 10.1021/cr1001194

    38. [38]

      Wang, B. L.; Wang, D.; Cui, D. M.; Gao, W.; Tang, T.; Chen, X. S.; Jing, X. B. Synthesis of the first rare earth metal bis(alkyl)s bearing an indenyl functionalized N-heterocyclic carbene. Organometallics 2007, 26, 3167-3172.  doi: 10.1021/om0700922

  • 加载中
    1. [1]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    2. [2]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    3. [3]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    4. [4]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    5. [5]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    6. [6]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

    9. [9]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    10. [10]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    11. [11]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    12. [12]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    13. [13]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    14. [14]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    15. [15]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    16. [16]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    17. [17]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    18. [18]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    19. [19]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(0)
  • Abstract views(747)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return