Citation: Xue-Min Dai, Hong Gao, Ran Zhang, Zhi-Jun Du, Tong-Fei Shi, Xiang-Ling Ji, Xue-Peng Qiu, Yong-Feng Men. Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 478-492. doi: 10.1007/s10118-019-2205-4 shu

Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole

  • Corresponding author: Xue-Peng Qiu, xp_q@ciac.ac.cn Yong-Feng Men, men@ciac.ac.cn
  • Received Date: 14 October 2018
    Revised Date: 24 November 2018
    Accepted Date: 9 December 2018
    Available Online: 23 January 2019

  • A series of polyamic acid copolymers (co-PAAs) with para-hydroxyl groups was synthesized using two diamine monomers, namely p-phenylenediamine (p-PDA) and 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole (m-pHBOA), of different molar ratios through copolymerization with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) in N,N-dimethyacetamine (DMAc). The co-PAA solutions were used to fabricate fibers by dry-jet wet spinning, and thermal imidization was conducted to obtain polyimide copolymer (co-PI) fibers. The effects of the m-pHBOA moiety on molecular packing and physical properties of the prepared fibers were investigated. Fourier transform infrared (FTIR) spectroscopic results confirmed that intra/intermolecular hydrogen bonds originated from the hydroxyl group and the nitrogen atom of the benzoxazole group and/or the hydroxyl group and the oxygen atom of the carbonyl group of cyclic imide. As-prepared PI fibers displayed homogenous and smooth surface and uniform diameter. The glass transition temperatures (Tgs) of PI fibers were within 311−337 °C. The polyimide fibers showed 5% weight loss temperature (T5%) at above 510 °C in air. Two-dimensional wide-angle X-ray diffraction (WXRD) patterns indicated that the homo-PI and co-PI fibers presented regularly arranged polymer chains along the fiber axial direction. The ordered molecular packing along the transversal direction was destroyed by introducing the m-pHBOA moiety. Moreover, the crystallinity and orientation factors increased with increasing draw ratio. Small-angle X-ray scattering (SAXS) results showed that it is beneficial to reduce defects in the fibers by increasing the draw ratio. The resultant PI fibers exhibited excellent mechanical properties with fracture strength and initial modulus of 2.48 and 89.73 GPa, respectively, when the molar ratio of p-PDA/m-pHBOA was 5/5 and the draw ratio was 3.0.
  • 加载中
    1. [1]

      Li, F.; Huang, L.; Shi, Y.; Jin, X.; Wu, Z.; Shen, Z.; Chuang, K.; Lyon, R. E.; Harris, F. W.; Cheng S. Z. D. Thermal degradation mechanism and thermal mechanical properties of two high-performance aromatic polyimide fibers. J. Macromol. Sci. Part B: Phys. 2016, 38(1-2), 107-122.

    2. [2]

      Zhao, Y.; Dong, Z.; Li, G.; Dai, X.; Liu, F.; Ma, X.; Qiu, X. Atomic oxygen resistance of polyimide fibers with phosphorus-containing side chains. RSC Adv. 2017, 7, 5437-5444.  doi: 10.1039/C6RA26941A

    3. [3]

      Dong, J.; Yang, C.; Cheng, Y.; Wu, T.; Zhao, X.; Zhang, Q. Facile method for fabricating low dielectric constant polyimide fibers with hyperbranched polysiloxane. J. Mater. Chem. C 2017, 5, 2818-2825  doi: 10.1039/C7TC00196G

    4. [4]

      Zhao, Y.; Feng, T.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the main chain. RSC Adv. 2016, 6, 42482-42494.  doi: 10.1039/C6RA02344D

    5. [5]

      Penn, L.; Larsen, F. Physicochemical properties of kevlar-49 fiber. J. Appl. Polym. Sci. 1979, 23, 59-73.  doi: 10.1002/app.1979.070230106

    6. [6]

      Yang, H., in Kevlar aramid fiber, Wiley, 1993.

    7. [7]

      Choe, E. W.; Kim, S. N. Synthesie, spining and fiber mechanical properties of poly(p-phenylenebenzobisoxazole). Macromolecules 1981, 14, 920-924.  doi: 10.1021/ma50005a006

    8. [8]

      Sikkema, D. J. Design, synthesis and properties of a novel rigid rod polymer; PIPD or M5′: high modulus and tenacity fibres with substantial compressive strength. Polymer 1998, 39(24), 5981-5986.  doi: 10.1016/S0032-3861(97)10289-0

    9. [9]

      Afshari, M.; Sikkema, D. J.; Lee, K.; Bogle, M. High performance fibers based on rigid and flexible polymers. Polym. Rev. 2008, 48(2), 230-274.  doi: 10.1080/15583720802020129

    10. [10]

      Eashoo, M.; Wu, Z.; Zhang, A.; Shen, D.; Tse, C.; Harris, F. W.; Cheng, S. Z. D.; Gardner, K. H.; Hsiao, B. S. High performance aromatic polyimide fibers, 3. A polyimide synthesized from 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 2,2′-dimethyl-4,4′-diaminobiphenyl. Macromol. Chem. Phys. 1994, 195, 2207-2225.  doi: 10.1002/macp.1994.021950627

    11. [11]

      Cheng, S. Z. D.; Wu, Z.; Mark, E. A high-performance aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence. Polymer 1991, 32(10), 1803-1810.  doi: 10.1016/0032-3861(91)90367-R

    12. [12]

      Dong, J.; Yin, C.; Luo, W.; Zhang, Q. Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers. J. Mater. Sci. 2013, 48, 7594-7602.  doi: 10.1007/s10853-013-7576-2

    13. [13]

      Park, S. K.; Farris, R. J. Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization. Polymer 2001, 42(26), 10087-10093.  doi: 10.1016/S0032-3861(01)00576-6

    14. [14]

      Dorogy, W. E.; St Clair, A. K. Wet spinning of solid polyamic acid fibers. J. Appl. Polym. Sci. 1991, 43, 501-519.  doi: 10.1002/app.1991.070430311

    15. [15]

      Zhang, E.; Dai, X.; Dong, Z.; Qiu, X.; Ji, X. Critical concentration and scaling exponents of one soluble polyimide from dilute to semidilute entangled solutions. Polymer 2016, 84, 275-285.  doi: 10.1016/j.polymer.2016.01.001

    16. [16]

      Xiang, H.; Huang, Z.; Liu, L.; Chen, L.; Zhu, J.; Hu, Z.; Yu, J. Structure and properties of polyimide (BTDA-TDI/MDI co-polyimide) fibers obtained by wet-spinning. Macromol. Res. 2011, 19(7), 645-653.  doi: 10.1007/s13233-011-0709-z

    17. [17]

      Yang, W.; Liu, F.; Zhang, J.; Zhang, E.; Qiu, X.; Ji, X. Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber. Eur. Polym. J. 2017, 96, 429-442.  doi: 10.1016/j.eurpolymj.2017.09.015

    18. [18]

      Yin, C.; Dong, J.; Tan, W.; Lin, J.; Chen, D.; Zhang, Q. Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. Polymer 2015, 75, 178-186.  doi: 10.1016/j.polymer.2015.08.025

    19. [19]

      Dong, J.; Yin, C.; Lin, J.; Zhang, D.; Zhang, Q. Evolution of the microstructure and morphology of polyimide fibers during heat-drawing process. RSC Adv. 2014, 4, 44666-44673.  doi: 10.1039/C4RA07129H

    20. [20]

      Yang, W.; Liu, F.; Zhang, E.; Qiu, X.; Ji, X. Influence of atmosphere and force during thermal imidization on the structure and properties of BPDA-PDA polyimide fibers. Chem. J. Chinese U-Chinese 2017, 38(1), 150-158.

    21. [21]

      Yan, X.; Zhang, M.; Qi, S.; Tian, G.; Niu, H.; Wu, D. A high-performance aromatic co-polyimide fiber: structure and property relationship during gradient thermal annealing. J. Mater. Sci. 2018, 53, 2193-2207.  doi: 10.1007/s10853-017-1552-1

    22. [22]

      Yang, W.; Liu, F.; Li, G.; Zhang, E.; Xue, Y.; Dong, Z.; Qiu, X.; Ji, X. Comparison of different methods for determining the imidization degree of polyimide fibers. Chinese J. Polym. Sci. 2016, 34(2), 209-220.  doi: 10.1007/s10118-016-1749-9

    23. [23]

      Sukhanova, T.; Baklagina, Y. G.; Kudryavtsev, V.; Maricheva, T.; Lednický, F. Morphology, deformation and failure behaviour of homo-and copolyimide fibres: 1. Fibres from 4,4′-oxybis (phthalic anhydride)(DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis (4-aminophenyl)-pyrimidine (2,5PRM). Polymer 1999, 40(23), 6265-6276.  doi: 10.1016/S0032-3861(99)00039-7

    24. [24]

      Chen, X.; Li, Z.; Liu, F.; Sun, Q.; Li, J. Synthesis and properties of poly(imide-benzoxazole) fibers from 4,4′-oxydiphthalic dianhydride in polyphosphoric acid. Eur. Polym. J. 2015, 64, 108-117.  doi: 10.1016/j.eurpolymj.2014.12.031

    25. [25]

      Yin, C.; Dong, J.; Zhang, D.; Lin, J.; Zhang, Q. Enhanced mechanical and hydrophobic properties of polyimide fibers containing benzimidazole and benzoxazole units. Eur. Polym. J. 2015, 67, 88-98.  doi: 10.1016/j.eurpolymj.2015.03.028

    26. [26]

      Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q. Synthesis of poly(benzobisoxazole-co-imide) and fabrication of high-performance fibers. Polymer 2017, 133, 50-59.  doi: 10.1016/j.polymer.2017.11.015

    27. [27]

      Gan, F.; Dong, J.; Zhang, D.; Tan, W.; Zhao, X.; Zhang, Q. High-performance polyimide fibers derived from wholly rigid-rod monomers. J. Mater. Sci. 2018, 53, 5477-5489.  doi: 10.1007/s10853-017-1932-6

    28. [28]

      Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. High-performance copolyimide fibers containing quinazolinone moiety: Preparation, structure and properties. Polymer 2013, 54, 1700-1708.  doi: 10.1016/j.polymer.2013.01.047

    29. [29]

      Borjigin, H.; Liu, Q.; Zhang, W.; Gaines, K.; Riffle, J. S.; Paul, D. R.; Freeman, B. D.; McGrath, J. E. Synthesis and characterization of thermally rearranged (TR) polybenzoxazoles: Influence of isometic structure on gas transport properties. Polymer 2015, 75, 199-210.  doi: 10.1016/j.polymer.2015.07.024

    30. [30]

      Hodgkin, J. H.; Liu, M. S.; Dao, B. N.; Mardel, J.; Hill, A. J. Reaction mechanism and products of the thermal conversion of hydroxy-containing polyimides. Eur. Polym. J. 2011, 47, 394-400.  doi: 10.1016/j.eurpolymj.2010.12.014

    31. [31]

      Han, S. H., Lee, J. E.; Lee, K. J.; Park, H. B.; Lee, Y. M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 2010, 357, 143-151.  doi: 10.1016/j.memsci.2010.04.013

    32. [32]

      Dai, X.; Bao, F.; Jiao, L.; Yao, H.; Ji, X.; Qiu, X.; Men, Y. High-performance polyimide copolymer fibers derived from 5-amino-2-(2-hydroxy-4-aminobenzene)-benzoxazole: preparation, structure and properties. Polymer 2018, 150, 254-266.  doi: 10.1016/j.polymer.2018.06.079

    33. [33]

      Preston, J.; Dewinter, W.; Hofferbert, W. Heterocyclic intermediates for the preparation of thermally stable polymers. II. Benzoxazoles and benzothiazoles. J. Heterocycl. Chem. 1968, 5, 269-273.  doi: 10.1002/jhet.v5:2

    34. [34]

      Klug, H. P.; Alexander, L. E., in X-ray diffraction procedures, Wiley: New York, 1954.

    35. [35]

      Wilchinsky, Z. Orientation in crystalline polymers related to deformation. Polymer 1964, 5(6), 271-281.

    36. [36]

      Ruland, W. Small-angle scattering studies on carbonized cellulose fibers. J. Polym. Sci., Part C:Polym. Symp. 1969, 28, 143-151.

    37. [37]

      Guiner, A.; Fournet, G.; Walker, C., in Small angle scattering of X-rays, Wiley & Sons, New York, 1955.

    38. [38]

      Kratky, O.; Porod, G. Diffuse small-angle scattering of X-rays in colloid systems. J. Coll. Sci. 1949, 4, 35-70.  doi: 10.1016/0095-8522(49)90032-X

    39. [39]

      Lin, C.; Kuo, J.; Chen, C.; Fang, J. Investigation of bifurcated hydrogen bonds within the thermotropic liquid crystalline polyurethanes. Polymer 2012, 53(1), 254-258.  doi: 10.1016/j.polymer.2011.11.009

    40. [40]

      Dong, H.; Xin, Z.; Lu, X.; Lv, Y. Effect of N-substituents on the surface characteristics and hydrogen bonding network of polybenzoxazines. Polymer 2011, 52(4), 1092-1101.  doi: 10.1016/j.polymer.2011.01.009

    41. [41]

      Snyder, R.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. FTIR studies of polyimides: thermal curing. Macromolecules 1989, 22, 4166-4172.  doi: 10.1021/ma00201a006

    42. [42]

      Konieczny, J.; Wunder, S. Absence of noncyclic imide formation in PMDA-ODA polyimide. Macromolecules 1996, 29, 7613-7615.  doi: 10.1021/ma9600217

    43. [43]

      Ma, X.; Kang, C.; Chen, W.; Jin, R.; Guo, H.; Qiu, X.; Gao, L. Effect of multiple H-bonding on the properties of polyimides containing the rigid rod groups. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 570-581.

    44. [44]

      Luo, L.; Yao, J.; Wang, X.; Li, K.; Huang, J.; Li, B.; Wang, H.; Feng, Y.; Liu, X. The evolution of macromolecular packing and sudden crystallization in rigid-rod polyimide via effect of multiple H-bonding on charge transfer (CT) interactions. Polymer 2014, 55(16), 4258-4269.  doi: 10.1016/j.polymer.2014.06.080

    45. [45]

      Fan, L.; Zhao, D.; Bian, C.; Wang, Y.; Liu, G. Glass transition temperatures of copolymers from methyl methacrylate, styrene, and acrylonitrile: binary copolymers. Polym. Bull. 2011, 67, 1311-1323.  doi: 10.1007/s00289-011-0528-6

    46. [46]

      Jiang, G.; Huang, W.; Li, L.; Wang, X.; Pang, F.; Zhang, Y.; Wang, H. Structure and properties of regenerated cellulose fibers from different technology processes. Carbohyd. Polym. 2012, 87(3), 2012-2018.  doi: 10.1016/j.carbpol.2011.10.022

  • 加载中
    1. [1]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    2. [2]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    3. [3]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    6. [6]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    7. [7]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    8. [8]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    9. [9]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    10. [10]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    11. [11]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    12. [12]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    13. [13]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    14. [14]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    15. [15]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    16. [16]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    17. [17]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    18. [18]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    19. [19]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    20. [20]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

Metrics
  • PDF Downloads(0)
  • Abstract views(819)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return