Citation: Lin-Can Yang, Li Han, Hong-Wei Ma, Pi-Bo Liu, He-Yu Shen, Chao Li, Song-Bo Zhang, Yang Li. Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 841-850. doi: 10.1007/s10118-019-2203-6 shu

Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction

  • Corresponding author: Hong-Wei Ma, 
  • Received Date: 26 September 2018
    Revised Date: 19 November 2018
    Accepted Date: 1 January 2018
    Available Online: 29 December 2018

  • " Thiol-yne” click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end strategy was employed when using the di-addition feature of thiol-yne reaction, thus the in-chain di-addition strategy could endow us with a broader space to develop the synthesis of advanced polymers. Therefore, in this paper, the features of in-chain mono- and di-addition were investigated when modifying the alkyne-functionalized polymers to prepare grafted polymers via thiol-yne click reaction. The results showed that it is almost impossible to obtain the in-chain di-adducts even under excess feeding of chain-end thiol-functionalized grafts, while only the in-chain mono-adducts could be obtained efficiently. Further researches investigated that the controlled grafting could be encountered when carrying out the thiol-yne click reaction between chain-end alkyne-functionalized polystyrenes and chain-end thiol-functionalized polystyrenes under proper feedings. Therefore, the effect of steric-hindrance might be the primary reason for the alternative grafting via thiol-yne click reaction between in-chain and chain-end alkyne-functionalized polymers.
  • 加载中
    1. [1]

      Leophairatana, P.; Samanta, S.; De Silva, C. C.; Koberstein, J. T. Preventing alkyne-alkyne (i.e., Glaser) coupling associated with the ATRP synthesis of alkyne-functional polymers/macromonomers and for alkynes under click (i.e., CuAAC) reaction conditions. J. Am. Chem. Soc. 2017, 139, 3756-3766.  doi: 10.1021/jacs.6b12525

    2. [2]

      Wang, J.; Mei, J.; Zhao, E.; Song, Z.; Qin, A.; Sun, J. Z.; Tang, B. Z. Ethynyl-capped hyperbranched conjugated polytriazole: Click polymerization, clickable modification, and aggregation-enhanced emission. Macromolecules 2012, 45, 7692-7703.  doi: 10.1021/ma3017037

    3. [3]

      Dai, Y.; Zhang, X.; Xia, F. Click Chemistry in functional aliphatic polycarbonates. Macromol. Rapid Commun. 2017, 38, 1700357.  doi: 10.1002/marc.v38.19

    4. [4]

      Tang, H.; Li, Y.; Lahasky, S. H.; Sheiko, S. S.; Zhang, D. Core-shell molecular bottlebrushes with helical polypeptide backbone: Synthesis, characterization, and solution conformations. Macromolecules 2011, 44, 1491-1499.  doi: 10.1021/ma1025994

    5. [5]

      Yang, K.; Huang, X.; Zhu, M.; Xie, L.; Tanaka, T.; Jiang, P. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. ACS Appl. Mater. Interfaces 2014, 6, 1812-1822.  doi: 10.1021/am4048267

    6. [6]

      Xiao, L.; Chen, Y.; Zhang, K. Efficient metal-free " grafting onto” method for bottlebrush polymers by combining RAFT and triazolinedione-diene click reaction. Macromolecules 2016, 49, 4452-4461.  doi: 10.1021/acs.macromol.6b00782

    7. [7]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Binder, W. H.; Sachsenhofer, R. ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 2007, 28, 15-54.  doi: 10.1002/(ISSN)1521-3927

    9. [9]

      Golas, P. L.; Matyjaszewski, K. Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem. Soc. Rev. 2010, 39, 1338-1354.  doi: 10.1039/B901978M

    10. [10]

      Samad, A. A.; Bethry, A.; Janouskova, O.; Ciccione, J.; Wenk, C.; Coll, J. L.; Subra, G.; Etrych, T.; Omar, F. E.; Bakkour, Y.; Coudane, J.; Nottelet, B. Iterative photoinduced chain functionalization as a generic platform for advanced polymeric drug delivery systems. Macromol. Rapid Commun. 2018, 39, 1700502.  doi: 10.1002/marc.v39.3

    11. [11]

      Yang, W. J.; Zhao, T.; Zhou, P.; Chen, S.; Gao, Y.; Liang, L.; Wang, X.; Wang, L. " Click” functionalization of dual stimuli-responsive polymer nanocapsules for drug delivery systems. Polym. Chem. 2017, 8, 3056-3065.  doi: 10.1039/C7PY00161D

    12. [12]

      Huynh, V. T.; Chen, G.; de Souza, P.; Stenzel, M. H. Thiol-yne and thiol-ene "click" chemistry as a tool for a variety of platinum drug delivery carriers, from statistical copolymers to crosslinked micelles. Biomacromolecules 2011, 12, 1738-1751.  doi: 10.1021/bm200135e

    13. [13]

      Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L. Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater. 2011, 21, 2754-2763.  doi: 10.1002/adfm.201100078

    14. [14]

      Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 2013, 113, 4905-4979.  doi: 10.1021/cr200409f

    15. [15]

      Brummelhuis, N. T.; Schlaad, H. Stimuli-responsive star polymers through thiol-yne core functionalization/crosslinking of block copolymer micelles. Polym. Chem. 2011, 2, 1180-1184.  doi: 10.1039/c1py00002k

    16. [16]

      Cai, T.; Li, M.; Neoh, K. G.; Kang, E. T. Preparation of stimuli responsive polycaprolactone membranes of controllable porous morphology via combined atom transfer radical polymerization, ring-opening polymerization and thiol-yne click chemistry. J. Mater. Chem. 2012, 22, 16248-16258.  doi: 10.1039/c2jm33419d

    17. [17]

      Li, Y.; Zhou, C.; Xu, L.; Yao, F.; Cen, L.; Fu, G. D. Stimuli-responsive hydrogels prepared by simultaneous " click chemistry” and metal-ligand coordination. RSC Adv. 2015, 5, 18242-18251.  doi: 10.1039/C4RA11946K

    18. [18]

      del Prado, A.; Navarro, R.; Levkin, P.; Gallardo, A.; Elvira, C.; Reinecke, H. Dual stimuli-responsive polyamines derived from modified N-vinylpyrrolidones through CuAAC click chemistry. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1098-1108.  doi: 10.1002/pola.v54.8

    19. [19]

      Castro, V.; Rodriguez, H.; Albericio, F. CuAAC: An efficient click chemistry reaction on solid phase. ACS Comb. Sci. 2016, 18, 1-14.  doi: 10.1021/acscombsci.5b00087

    20. [20]

      Marrocchi, A.; Facchetti, A.; Lanari, D.; Santoro, S.; Vaccaro, L. Click-chemistry approaches to pi-conjugated polymers for organic electronics applications. Chem. Sci. 2016, 7, 6298-6308.  doi: 10.1039/C6SC01832G

    21. [21]

      Ma, H.; Wang, Q.; Sang, W.; Han, L.; Liu, P.; Sheng, H.; Wang, Y.; Li, Y. Facile synthesis of DendriMac polymers via the combination of living anionic polymerization and highly efficient coupling reactions. Macromol. Rapid Commun. 2016, 37, 168-173.  doi: 10.1002/marc.v37.2

    22. [22]

      Takise, R.; Muto, K.; Yamaguchi, J. Cross-coupling of aromatic esters and amides. Chem. Soc. Rev. 2017, 46, 5864-5888.  doi: 10.1039/C7CS00182G

    23. [23]

      Farmer, T. J.; Clark, J. H.; Macquarrie, D. J.; Ogunjobi, J. K.; Castle, R. L. Post-polymerisation modification of bio-derived unsaturated polyester resins via Michael additions of 1,3-dicarbonyls. Polym. Chem. 2016, 7, 1650-1658.  doi: 10.1039/C5PY01729G

    24. [24]

      Ma, H.; Han, L.; Li, Y. Sequence determination and regulation in the living anionic copolymerization of styrene and 1,1-diphenylethylene (DPE) derivatives. Macromol. Chem. Phys. 2017, 218, 1600420.

    25. [25]

      Wang, Q.; Ma, H.; Sang, W.; Han, L.; Liu, P.; Shen, H.; Huang, W.; Gong, X.; Yang, L.; Wang, Y.; Li, Y. Synthesis of sequence-determined bottlebrush polymers based on sequence determination in living anionic copolymerization of styrene and dimethyl(4-(1-phenylvinyl)phenyl)silane. Polym. Chem. 2016, 7, 3090-3099.  doi: 10.1039/C6PY00085A

    26. [26]

      Han, L.; Ma, H.; Li, Y.; Wu, J.; Xu, H.; Wang, Y. Construction of topological macromolecular side chains packing model: study unique relationship and differences in LC-microstructures and properties of two analogous architectures with well-designed side attachment density. Macromolecules 2015, 48, 925-941.  doi: 10.1021/acs.macromol.5b00101

    27. [27]

      Han, L.; Ma, H.; Li, Y.; Zhu, S.; Yang, L.; Tan, R.; Liu, P.; Shen, H.; Huang, W.; Gong, X. Strategies for tailoring LC-functionalized polymer: probe contribution of [Si―O―Si] versus [Si―C] spacer to thermal and polarized optical performance " driven by” well-designed grafting density and precision in flexible/rigid matrix. Macromolecules 2016, 49, 5350-5365.  doi: 10.1021/acs.macromol.6b01429

    28. [28]

      Liu, H.; Pan, W.; Tong, M.; Zhao, Y. Synthesis and properties of couplable ABCDE star copolymers by orthogonal CuAAC and Diels-Alder click reactions. Polym. Chem. 2016, 7, 1603-1611.  doi: 10.1039/C5PY01960E

    29. [29]

      Deng, M.; Guo, F.; Liao, D.; Hou, Z.; Li, Y. Aluminium-catalyzed terpolymerization of furfuryl glycidyl ether with epichlorohydrin and ethylene oxide: synthesis of thermoreversible polyepichlorohydrin elastomers with furan/maleimide covalent crosslinks. Polym. Chem. 2018, 9, 98-107.  doi: 10.1039/C7PY01516J

    30. [30]

      Wang, A.; Niu, H.; He, Z.; Li, Y. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers. Polym. Chem. 2017, 8, 4494-4502.  doi: 10.1039/C7PY00896A

    31. [31]

      Lowe, A. B. Thiol-ene " click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17-36.  doi: 10.1039/B9PY00216B

    32. [32]

      Yu, B.; Chan, J. W.; Hoyle, C. E.; Lowe, A. B. Sequential thiol-ene/thiol-ene and thiol-ene/thiol-yne reactions as a route to well-defined mono and bis end-functionalized poly(N-isopropylacrylamide). J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3544-3557.  doi: 10.1002/pola.v47:14

    33. [33]

      Lowe, A. B. Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer 2014, 55, 5517-5549.  doi: 10.1016/j.polymer.2014.08.015

    34. [34]

      Kiskan, B.; Weber, J. Versatile postmodification of conjugated microporous polymers using thiol-yne chemistry. ACS Macro Lett. 2012, 1, 37-40.  doi: 10.1021/mz200060z

    35. [35]

      Wang, W.; Shi, Y.; Wang, X.; Qin, A.; Sun, J. Z.; Tang, B. Z. A novel post-polymerization modification route to functional poly(disubstituted acetylenes) through phenol-yne click reaction. Polym. Chem. 2017, 8, 2630-2639.  doi: 10.1039/C7PY00109F

    36. [36]

      Hoogenboom, R. Thiol-yne chemistry: a powerful tool for creating highly functional materials. Angew. Chem. Int. Ed. 2010, 49, 3415-3417.  doi: 10.1002/anie.201000401

    37. [37]

      Li, H.; Yu, B.; Matsushima, H.; Hoyle, C. E.; Lowe, A. B. The Thiol-isocyanate click reaction: facile and quantitative access to ω-end-functional poly(N,N-diethylacrylamide) synthesized by RAFT radical polymerization. Macromolecules 2009, 42, 6537-6542.  doi: 10.1021/ma9010878

    38. [38]

      Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. Synthesis of dendrimers through divergent iterative thio-bromo " click” chemistry. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3931-3939.  doi: 10.1002/pola.v47:15

    39. [39]

      Xu, J.; Tao, L.; Boyer, C.; Lowe, A. B.; Davis, T. P. Combining thio-bromo " click” chemistry and RAFT polymerization: A powerful tool for preparing functionalized multiblock and hyperbranched polymers. Macromolecules 2010, 43, 20-24.  doi: 10.1021/ma902154h

    40. [40]

      Nieto-Orellana, A.; Di Antonio, M.; Conte, C.; Falcone, F. H.; Bosquillon, C.; Childerhouse, N.; Mantovani, G.; Stolnik, S. Effect of polymer topology on non-covalent polymer-protein complexation: miktoarm versus linear mPEG-poly(glutamic acid) copolymers. Polym. Chem. 2017, 8, 2210-2220.  doi: 10.1039/C7PY00169J

    41. [41]

      Aoki, D.; Uchida, S.; Takata, T. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains. Angew. Chem. Int. Ed. 2015, 54, 6770-6774.  doi: 10.1002/anie.201500578

    42. [42]

      Lutz, J.-F.; Lehn, J.-M.; Meijer, E. W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024.  doi: 10.1038/natrevmats.2016.24

    43. [43]

      Shi, Y.; Cao, X.; Luo, S.; Wang, X.; Graff, R. W.; Hu, D.; Guo, R.; Gao, H. Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence. Macromolecules 2016, 49, 4416-4422.  doi: 10.1021/acs.macromol.6b01144

    44. [44]

      Laure, C.; Karamessini, D.; Milenkovic, O.; Charles, L.; Lutz, J. F. Coding in 2D: Using intentional dispersity to enhance the information capacity of sequence-coded polymer barcodes. Angew. Chem. Int. Ed. 2016, 55, 10722-10725.  doi: 10.1002/anie.201605279

    45. [45]

      Zydziak, N.; Konrad, W.; Feist, F.; Afonin, S.; Weidner, S.; Barner-Kowollik, C. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation. Nat. Commun. 2016, 7, 13672.  doi: 10.1038/ncomms13672

    46. [46]

      Yang, L.; Ma, H.; Han, L.; Liu, P.; Shen, H.; Li, C.; Li, Y. Sequence features of sequence-controlled polymers synthesized by 1,1-diphenylethylene derivatives with similar reactivity during living anionic polymerization. Macromolecules 2018, 51, 5891-5903.  doi: 10.1021/acs.macromol.8b01491

    47. [47]

      Ma, H.; Wang, Q.; Sang, W.; Han, L.; Liu, P.; Chen, J.; Li, Y.; Wang, Y. Synthesis of bottlebrush polystyrenes with uniform, alternating, and gradient distributions of brushes via living anionic polymerization and hydrosilylation. Macromol. Rapid Commun. 2015, 36, 726-732.  doi: 10.1002/marc.v36.8

    48. [48]

      Liu, P.; Ma, H.; Han, L.; Yang, L.; Shen, H.; Li, C.; Li, Y. The effect of amine-functionalized 1,1-diphenylethylene (DPE) derivatives on end-capping reactions and the simulation of their precision for sequence control. Polymer 2018, 147, 157-163.  doi: 10.1016/j.polymer.2018.06.006

    49. [49]

      Huang, W.; Ma, H.; Han, L.; Liu, P.; Yang, L.; Shen, H.; Hao, X.; Li, Y. Synchronous regulation of periodicity and monomer sequence during living anionic copolymerization of styrene and dimethyl-[4-(1-phenylvinyl)phenyl] silane (DPE-SiH). Macromolecules 2018, 51, 3746-3757.  doi: 10.1021/acs.macromol.8b00666

    50. [50]

      Yang, L.; Ma, H.; Han, L.; Hao, X.; Liu, P.; Shen, H.; Li, Y. Synthesis of a sequence-controlled in-chain alkynyl/tertiary amino dual-functionalized terpolymer via living anionic polymerization. Polym. Chem. 2018, 9, 108-120.  doi: 10.1039/C7PY01837A

    51. [51]

      Sang, W.; Ma, H.; Wang, Q.; Hao, X.; Zheng, Y.; Wang, Y.; Li, Y. Monomer sequence determination in the living anionic copolymerization of styrene and asymmetric bi-functionalized 1,1-diphenylethylene derivatives. Polym. Chem. 2016, 7, 219-234.  doi: 10.1039/C5PY01562F

    52. [52]

      Liu, P.; Ma, H.; Huang, W.; Han, L.; Hao, X.; Shen, H.; Bai, Y.; Li, Y. Sequence regulation in the living anionic copolymerization of styrene and 1-(4-dimethylaminophenyl)-1-phenylethylene by modification with different additives. Polym. Chem. 2017, 8, 1778-1789.  doi: 10.1039/C6PY02229D

    53. [53]

      Liu, P.; Ma, H.; Huang, W.; Shen, H.; Wu, L.; Li, Y.; Wang, Y. The determination of sequence distribution in the living anionic copolymerization of styrene and strong electron-donating DPE derivative-1,1-bis(4-N,N-dimethylanimophenyl)ethylene. Polymer 2016, 97, 167-173.  doi: 10.1016/j.polymer.2016.05.015

    54. [54]

      Natalello, A.; Hall, J. N.; Eccles, E. A.; Kimani, S. M.; Hutchings, L. R. Kinetic control of monomer sequence distribution in living anionic copolymerization. Macromol. Rapid Commun. 2011, 32, 233-237.  doi: 10.1002/marc.v32.2

    55. [55]

      Hutchings, L. R; Brooks P. P.; Parker D.; Mosely, J. A.; Sevinc, S. Monomer sequence control via living anionic copolymerization: Synthesis of alternating, statistical, and telechelic copolymers and sequence analysis by MALDI ToF mass spectrometry. Macromolecules, 2015, 48, 610-628.  doi: 10.1021/ma5016038

    56. [56]

      Lowe, A. B. Thiol-ene " click” reactions and recent applications in polymer and materials synthesis: a first update. Polym. Chem. 2014, 5, 4820-4870.  doi: 10.1039/C4PY00339J

    57. [57]

      Hardman, S. J.; Muhamad-Sarih, N.; Riggs, H. J.; Thompson, R. L.; Rigby, J.; Bergius, W. N. A.; Hutchings, L. R. Electrospinning superhydrophobic fibers using surface segregating end-functionalized polymer additives. Macromolecules, 2011, 44, 6461-6470.  doi: 10.1021/ma200852z

    58. [58]

      Pagliarulo, A.; Hutchings, L. R. End-functionalized chains via anionic polymerization: Can the problems with using diphenylethylene derivatives be solved by using bisphenol F? Macromol. Chem. Phys. 2018, 219, 1700386.  doi: 10.1002/macp.201700386

    59. [59]

      Günther, B.; Rall, B. C.; Ferlian, O.; Scheu, S.; Eitzinger, B. Variations in prey consumption of centipede predators in forest soils as indicated by molecular gut content analysis. Oikos 2014, 123, 1192-1198.  doi: 10.1111/more.2014.123.issue-10

    60. [60]

      Yuan, Y. Y.; Du, Q.; Wang, Y. C.; Wang, J. One-pot syntheses of amphiphilic centipede-like brush copolymers via combination of ring-opening polymerization and " click” chemistry. Macromolecules 2010, 43, 1739-1746.  doi: 10.1021/ma9023763

    61. [61]

      Goodwin, A.; Kang, N. G.; Mays, J. W. Graft and Comblike Polymers. In Anionic Polymerization. Hadjichristidis, N., Hirao, A. (eds) Springer, Tokyo, 2015.

    62. [62]

      Sun, T.; Li, K.; Li, Y.; Li, C.; Zhao, W.; Chen, L.; Chang, Y. Optimizing conditions for encapsulation of QDs by varying PEG chain density of amphiphilic centipede-like copolymer coating and exploration of QDs probes for tumor cell targeting and tracking. New J. Chem. 2012, 36, 2383-2391.  doi: 10.1039/c2nj40312a

  • 加载中
    1. [1]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    2. [2]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    3. [3]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    6. [6]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    9. [9]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    10. [10]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    11. [11]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    12. [12]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    13. [13]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    14. [14]

      Hanying LiWee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523

    15. [15]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    16. [16]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    17. [17]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    18. [18]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    19. [19]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    20. [20]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

Metrics
  • PDF Downloads(0)
  • Abstract views(870)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return