Citation: Sheng Xiang, Dong-Dong Zhou, Li-Dong Feng, Xin-Chao Bian, Gao Li, Xue-Si Chen, Tian-Chang Wang. Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 258-267. doi: 10.1007/s10118-019-2202-7 shu

Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers

  • Corresponding author: Gao Li, ligao@ciac.ac.cn Xue-Si Chen, xschen@ciac.ac.cn
  • Received Date: 8 October 2018
    Revised Date: 26 November 2018
    Accepted Date: 28 November 2018
    Available Online: 26 December 2018

  • The effect of the architecture of poly(ethylene glycol)/poly(L-lactide) (PEG/PLLA) block copolymers on the non-isothermal crystallization behaviors of PLLA blocks was investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). 1-Arm MPEG-b-PLLA and 4-arm PEG-b-PLLA (4PEG-b-PLLA) were synthesized by the ring-opening polymerization of L-lactide in the presence of poly(ethylene glycol) methyl ether (MPEG) and 4-arm poly(ethylene glycol) (4PEG). 4-Arm PLLA-b-MPEG (4PLLA-b-PEG) was synthesized by coupling 4-arm PLLA and MPEG. The WAXD results indicated that the crystalline structure of PLLA blocks did not alter due to the different chain architectures. The average values of Avrami index ( \begin{document}$\bar n$\end{document} ) were all above 4, which indicated that the nucleation mechanism of PLLA blocks was heterogeneous nucleation, regardless of the architectures. The overall crystallization rates were decreased markedly as following: MPEG-b-PLLA > 4PEG- b-PLLA > 4PLLA- b-PEG, ascribed to the different confinement by PEG blocks and to the steric hindrance of chain architectures. Therefore, the crystallization of PLLA blocks became more difficult and the crystallization activation energy of the PLLA blocks increased due to the confinement of chain architectures.
  • 加载中
    1. [1]

      Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): Research, development and industrialization. Biotechnol. J. 2010, 5, 1125-1136.  doi: 10.1002/biot.v5.11

    2. [2]

      Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338-356.  doi: 10.1016/j.progpolymsci.2009.12.003

    3. [3]

      Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology Bioresour. Technol. 2010, 101, 8493-8501.  doi: 10.1016/j.biortech.2010.05.092

    4. [4]

      Shi, X. D. ;Sun, P. J.;Gan Z. H. Preparation of porous polylactide microspheres and their application in tissue engineering. Chinese J. Polym. Sci. 2018, 36, 712−719.  doi: 10.1007/s10118-018-2079-x

    5. [5]

      Sun, Y.; He, C. Biodegradable " core-shell” rubber nanoparticles and their toughening of poly(lactides). Macromolecules 2013, 46, 9625-9633.  doi: 10.1021/ma4020615

    6. [6]

      Huang, S.; Sun, H.; Sun, J.; Li, G.; Chen, X. Biodegradable tough blends of poly(L-lactide) and poly(castor oil)-poly(L-lactide) copolymer. Mater. Lett. 2014, 133, 87-90.  doi: 10.1016/j.matlet.2014.06.133

    7. [7]

      Liu, Y.; Sun, J.; Bian, X.; Feng, L.; Xiang, S.; Sun, B.; Chen, Z.; Li, G.; Chen, X. Melt stereocomplexation from poly(L-lactic acid) and poly(D-lactic acid) with different optical purity. Polym. Degrad. Stab. 2013, 98, 844-852.  doi: 10.1016/j.polymdegradstab.2012.12.024

    8. [8]

      Sun, C. B.; Mao, H. D.;Chen, F.; Fu, Q. Preparation of polylactide composite with excellent flame retardance and improved mechanical properties. Chinese J. Polym. Sci. 2018, 36, 1385-1393.  doi: 10.1007/s10118-018-2150-7

    9. [9]

      Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Toughening effect of poly(D-lactide)-b-poly(butylene succinate)-b-poly(D-lactide) copolymers on poly(L-lactic acid) by solution casting method. Mater. Lett. 2015, 155, 94-96.  doi: 10.1016/j.matlet.2015.04.124

    10. [10]

      Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003, 4, 1827-1834.  doi: 10.1021/bm034235p

    11. [11]

      Peponi, L.; Navarro-Baena, I.; Báez, J. E.; Kenny, J. M.; Marcos-Fernández, A. Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer 2012, 53, 4561-4568.  doi: 10.1016/j.polymer.2012.07.066

    12. [12]

      Casas, M. T.; Puiggalí, J.; Raquez, J. M.; Dubois, P.; Córdova, M. E.; Müller, A. J. Single crystals morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Polymer 2011, 52, 5166-5177.  doi: 10.1016/j.polymer.2011.08.057

    13. [13]

      Cerrai, P.; Tricoli, M.; Lelli, L.; Guerra, G. D.; Delguerra, R. S.; Cascone, M. G.; Giusti, P. block-copolymers of L-lactide and poly(ethylene glycol) for biomedical applications. J. Mater. Sci-Mater. M. 1994, 5, 308-313.  doi: 10.1007/BF00058953

    14. [14]

      Kim, K. S.; Chung, S.; Chin, I. J.; Kim, M. N.; Yoon, J. S. Crystallization behavior of biodegradable amphiphilic poly(ethylene glycol)-poly(L-lactide) block copolymers. J. Appl. Polym. Sci. 1999, 72, 341-348.  doi: 10.1002/(ISSN)1097-4628

    15. [15]

      Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Feng, L.; Xiang, S.; Sun, B.; Chen, Z.; Li, G.; Chen, X. Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA. Polym. Degrad. Stab. 2014, 101, 10-17.  doi: 10.1016/j.polymdegradstab.2014.01.023

    16. [16]

      Ren, K.; Cheng, Y.; He, C.; Xiao, C.; Li, G.; Chen, X. The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene glycol)-block-polypeptide copolymers. Polymer 2013, 54, 2466-2472.  doi: 10.1016/j.polymer.2013.02.038

    17. [17]

      Shin, D.; Shin, K.; Aamer, K. A.; Tew, G. N.; Russell, T. P.; Lee, J. H.; Jho, J. Y. A Morphological study of a semicrystalline poly(L-lactic acid-b-ethylene oxide-b-L-lactic acid) triblock copolymer. Macromolecules 2005, 38, 104-109.  doi: 10.1021/ma0481712

    18. [18]

      Yang, J.; Liang, Y.; Luo, J.; Zhao, C.; Han, C. C. Multilength scale studies of the confined crystallization in poly(L-lactide)-block-poly(ethylene glycol) copolymer. Macromolecules 2012, 45, 4254-4261.  doi: 10.1021/ma202505f

    19. [19]

      Sun, J.; Hong, Z.; Yang, L.; Tang, Z.; Chen, X.; Jing, X. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer. Polymer 2004, 45, 5969-5977.  doi: 10.1016/j.polymer.2004.06.026

    20. [20]

      Sun, J.; Chen, X.; He, C.; Jing, X. Morphology and structure of single crystals of poly(ethylene glycol)−poly(ε-caprolactone) diblock copolymers. Macromolecules 2006, 39, 3717-3719.  doi: 10.1021/ma0603074

    21. [21]

      Zhang, J.; Duan, Y.; Domb, A. J.; Ozaki, Y. PLLA mesophase and its phase transition behavior in the PLLA−PEG−PLLA copolymer as revealed by infrared spectroscopy. Macromolecules 2010, 43, 4240-4246.  doi: 10.1021/ma100301h

    22. [22]

      Zhou, D.; Shao, J.; Li, G.; Sun, J.; Bian, X.; Chen, X. Crystallization behavior of PEG/PLLA block copolymers: Effect of the different architectures and molecular weights. Polymer 2015, 62, 70-76.  doi: 10.1016/j.polymer.2015.02.019

    23. [23]

      Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3215-3226.  doi: 10.1002/(ISSN)1099-0488

    24. [24]

      Zhou, D.; Sun, J.; Shao, J.; Bian, X.; Huang, S.; Li, G.; Chen, X. Unusual crystallization and melting behavior induced by microphase separation in MPEG-b-PLLA diblock copolymer. Polymer 2015, 80, 123-129.  doi: 10.1016/j.polymer.2015.10.066

    25. [25]

      Zhao, W.; Li, C. Y.; Wu, C. J.; Liu, X. L.; Mou, Z. H.; Yao, C. G.; Cui, D. M. Synthesis of ultraviolet absorption polylactide via immortal polymerization of rac-lactide initiated by a salan-yttrium catalyst. Chinese J. Polym. Sci. 2018, 36, 202−206.

    26. [26]

      Yao, F.; Bai, Y.; Zhou, Y.; Liu, C.; Wang, H.; Yao, K. Synthesis and characterization of multiblock copolymers based on L-lactic acid, citric acid, and poly(ethylene glycol). J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2073-2081.  doi: 10.1002/(ISSN)1099-0518

    27. [27]

      Feng, L. D.; Sun, B.; Bian, X.C.; Chen, Z.M.; Chen, X.S. Determination of D-lactate content in poly(lactic acid) using polarimetry. Polym. Test. 2010, 29, 771-776.  doi: 10.1016/j.polymertesting.2010.06.005

    28. [28]

      Tsuji, H.; Matsumura, N.; Arakawa, Y. Stereocomplex crystallization and homocrystallization of star-shaped four-armed stereo diblock poly(lactide)s with different L-lactyl unit contents: isothermal crystallization from the melt. J. Phys. Chem. B 2016, 120, 1183-1193.  doi: 10.1021/acs.jpcb.5b11813

    29. [29]

      Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): Molecular weight dependence. Macromolecules 2007, 40(19), 6898-6905.  doi: 10.1021/ma071258d

    30. [30]

      Pan, P.; Zhu, B.; Kai, W.; Dong, T.; Inoue, Y. Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 2008, 41, 4296-4304.  doi: 10.1021/ma800343g

    31. [31]

      Shao, J.; Sun, J.; Bian, X.; Zhou, Y.; Li, G.; Chen, X. The formation and transition behaviors of the mesophase in poly(D-lactide)/poly(L-lactide) blends with low molecular weights. CrystEngComm 2013, 15, 6469-6476.  doi: 10.1039/c3ce40748a

    32. [32]

      Shao, J.; Xiang, S.; Bian, X.; Sun, J.; Li, G.; Chen, X. Remarkable melting behavior of PLA stereocomplex in linear PLLA/PDLA blends. Ind. Eng. Chem. Res. 2015, 54, 2246-2253.  doi: 10.1021/ie504484b

    33. [33]

      Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC Polymer 1978, 19, 1142-1144.  doi: 10.1016/0032-3861(78)90060-5

    34. [34]

      Liu, T.; Mo, Z.; Zhang, H. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J. Appl. Polym. Sci. 1998, 67, 815-821.  doi: 10.1002/(ISSN)1097-4628

    35. [35]

      Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 2006, 27, 1515-1532.  doi: 10.1002/(ISSN)1521-3927

    36. [36]

      Vyazovkin, S.; Dollimore, D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Model. 1996, 36, 42-45.

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    3. [3]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    4. [4]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    5. [5]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    6. [6]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    7. [7]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    8. [8]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    9. [9]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    10. [10]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    11. [11]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    12. [12]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    13. [13]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    14. [14]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    15. [15]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    18. [18]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    19. [19]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    20. [20]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

Metrics
  • PDF Downloads(0)
  • Abstract views(715)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return