Citation: Na Li, Xing-Ke Zhang, Jun-Rong Yu, Yan Wang, Jing Zhu, Zu-Ming Hu. Synthesis and Characterization of Easily Colored Meta-aramid Copolymer Containing Ether Bonds[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 227-234. doi: 10.1007/s10118-019-2200-9 shu

Synthesis and Characterization of Easily Colored Meta-aramid Copolymer Containing Ether Bonds

  • Corresponding author: Jun-Rong Yu, yjr@dhu.edu.cn
  • Received Date: 3 September 2018
    Revised Date: 18 October 2018
    Accepted Date: 3 November 2018
    Available Online: 14 December 2018

  • This work described the preparation of easily colored meta-aramid (PMIA) copolymers from m-phenylenediamine (MPD), isophthaloyl dichloride (IPC), and 3,4′-oxydianiline (3,4′-ODA) via solution polycondensation in N,N-dimethylacetamide (DMAc). The novel co-PMIAs were obtained in relatively high inherent viscosities ranging from 1.32 dL/g to 2.53 dL/g, which could be easily cast into flexible films with high transparence or spun into fibers. All the newly synthesized copolymers possessed excellent thermal stabilities even better than that of commercial PMIA, with 5% weight loss temperatures higher than 430 °C in nitrogen measured by TGA and glass transition temperature of 267–277 °C measured by DSC. The cast films exhibited good mechanical properties with a tensile strength up to 107 MPa and a tensile modulus up to 2.2 GPa. The resultant PMIAs also showed good solubility and better dye ability for cationic dyes.
  • 加载中
    1. [1]

      Trigo-López, M.; Miguel-Ortega, Á.; Vallejos, S.; Muñoz, A.; Izquierdo, D.; Colina, Á.; García, F. C.; García, J. M. Intrinsically colored wholly aromatic polyamides (aramids). Dyes Pigments 2015, 122, 177-183.  doi: 10.1016/j.dyepig.2015.06.027

    2. [2]

      Horrocks, A. R. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polym. Degrad. Stabil. 2011, 96, 377-392.  doi: 10.1016/j.polymdegradstab.2010.03.036

    3. [3]

      Kim, E. M.; Choi, J. H. Dyeing properties and color fastness of 100%-aramid fiber. Fibers Polym. 2011, 12, 484-490.  doi: 10.1007/s12221-011-0484-7

    4. [4]

      Manyukov, E. A.; Sadova, S. F.; Kecek’Yan, A. S.; Puzikova, N. P.; Baeva, N. N. Heat-resistant para/meta -aramid fiber Arlana: Dyeing and the properties of the dyed materials. Theor. Found. Chem. Eng. 2007, 41, 698-702.  doi: 10.1134/S0040579507050430

    5. [5]

      Nimmanpipug, P.; Tashiro, K.; Maeda, Y.; Rangsiman, O. Factors governing the three-dimensional hydrogen bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds: (1) Systematic classification of structures analyzed by the X-ray diffraction method. J. Phys. Chem. B 2002, 106, 6842-6848.  doi: 10.1021/jp013982i

    6. [6]

      Kim, T.; Kim, G.; Park, J. Y.; Lim, J. S.; Yoo, K. P. Solubility measurement and dyeing performance evaluation of aramid NOMEX yarn by dispersed dyes in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2005, 45, 3425-3433.

    7. [7]

      Ouyang, S.; Wang, T.; Yu, Y.; Yang, B.; Yao, J.; Wang, S. From trans to cis conformation: Further understanding the surface properties of poly(m-phenylene isophthalamide). ACS Omega 2017, 2, 290-298.  doi: 10.1021/acsomega.6b00527

    8. [8]

      Islam, M. T.; Aimone, F.; Ferri, A.; Rovero, G. Use of N-methylformanilide as swelling agent for meta-aramid fibers dyeing: Kinetics and equilibrium adsorption of Basic Blue 41. Dyes Pigments 2015, 113, 554-561.  doi: 10.1016/j.dyepig.2014.08.029

    9. [9]

      Kim, E. M.; Jang, J. Surface modification of meta-aramid films by UV/ozone irradiation. Fibers Polym. 2010, 11, 677-682.  doi: 10.1007/s12221-010-0677-5

    10. [10]

      Nicolai, M.; Nechwatal, A. The swelling effect of liquid ammonia in the dyeing of aramids. Color. Technol. 2010, 110, 228-230.

    11. [11]

      Peila, R.; Aimone, F.; Migliavacca, G.; Alongi, J.; Ferri, A.; Rovero, G. In Dyeing of aramids: a comparison between two industrial swelling agents, Autex2011- World Textile Conference, 2011.

    12. [12]

      Dong, Y.; Jang, J. The enhanced cationic dyeability of ultraviolet/ozone-treated meta-aramid fabrics. Color. Technol. 2011, 127, 173-178.  doi: 10.1111/cote.2011.127.issue-3

    13. [13]

      Sheng, D.; Wang, Y.; Wang, X.; Lu, X.; Jiang, S.; Pan, H.; Cao, G.; Xu, W. Low-temperature dyeing of meta-aramid fabrics pretreated with 2-phenoxyethanol. Color. Technol. 2017, 133, 320-324.  doi: 10.1111/cote.2017.133.issue-4

    14. [14]

      Kobayashi, S.; Wakida, T.; Niu, S.; Hazama, S.; Ito, T.; Sasaki, Y. The effect of sputter etching on the surface characteristics of dyed aramid fabrics. Color. Technol. 1995, 111, 72-76.

    15. [15]

      Tansil, N. C.; Koh, L. D.; Han, M. Y. Functional silk: colored and luminescent. Adv Mater. 2012, 24, 1350-1350.  doi: 10.1002/adma.201290064

    16. [16]

      Mallakpour, S.; Rafiemanzelat, F.; Faghihi, K. Synthesis and characterization of new self-colored thermally stable poly(amide-ether-urethane)s based on an azo dye and different diisocyanates. Dyes Pigments 2007, 74, 713-722.  doi: 10.1016/j.dyepig.2006.05.007

    17. [17]

      Al-Muaikel, N. S. Synthesis and characterization of new unsaturated polyesters and copolyesters containing azo groups in the main chain. Eur. Polym. J. 2003, 39, 1025-1033.  doi: 10.1016/S0014-3057(02)00304-X

    18. [18]

      Patel, M. P.; Modi, B. J.; Patel, R. G.; Patel, V. S. Studies of novel water-soluble colored polyesters containing azo moiety. J. Appl. Polym. Sci. 2015, 68, 2041-2048.

    19. [19]

      Bojinov, V.; Konstantinova, T. Synthesis of polymerizable 1,8-naphthalimide dyes containing hindered amine fragment. Dyes Pigments 2002, 54, 239-245.  doi: 10.1016/S0143-7208(02)00047-5

    20. [20]

      Konstantinova, T.; Petrova, P. On the synthesis of some bifunctional reactive triazine dyes. Dyes Pigments 2002, 52, 115-120.  doi: 10.1016/S0143-7208(01)00080-8

    21. [21]

      Hsiao, S. H.; Lin, K. H. Soluble aromatic polyamides bearing asymmetrical diaryl ether groups. Polymer 2004, 45, 7877-7885.  doi: 10.1016/j.polymer.2004.09.030

    22. [22]

      Zhou, S.; Wang, X.; Zhang, W.; Zhang, M.; Zhang, X.; Zhao, N.; Liu, R.; Xu, J.; Shen, Z.; Fan, X. Facile preparation and characterization of soluble aramid. J. Appl. Polym. Sci. 2018, DOI: 10.1002/app.46341.  doi: 10.1002/app.46341

    23. [23]

      Liou, G. S.; Maruyama, M.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2’-bis(p-aminophenoxy) biphenyl or 2,2’-bis(p-aminophenoxy)-1,1’-binaphthyl and aromatic dicarboxylic acids. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2499-2506.  doi: 10.1002/pola.1993.080311010

    24. [24]

      Imai, Y. Synthesis of novel organic-soluble high-temperature aromatic polymers. High Perform. Polym. 1995, 7, 337-345.  doi: 10.1088/0954-0083/7/3/010

    25. [25]

      Liang, Q.; Liu, P.; Liu, C.; Jian, X.; Hong, D.; Li, Y. Synthesis and properties of lyotropic liquid crystalline copolyamides containing phthalazinone moiety and ether linkages. Polymer 2005, 46, 6258-6265.  doi: 10.1016/j.polymer.2005.05.059

    26. [26]

      Krevelen, D. W. V.; Hoftyzer, P. in Properties of polymers, their estimation and correlation with chemical structure, Elsevier Science, Netherlands, 1976, p.119

    27. [27]

      Takatsuka, R.; Uno, K.; Toda, F.; Iwakura, Y. Study on wholly aromatic polyamides containing methyl-substituted phenylene linkage. J. Polym. Sci., Part A: Polym. Chem. 1977, 15, 1905-1915.  doi: 10.1002/pol.1977.170150812

    28. [28]

      Varadaiah, V. V.; Rao, V. S. R. Relation between molecular weight and root-mean-square end-to-end distance of randomly coiled macromolecules. J. Appl. Polym. Sci. 1959, 36, 558-560.  doi: 10.1002/pol.1959.1203613063

    29. [29]

      Zeng, K.; Guo, Q.; Gao, S.; Wu, D.; Fan, H.; Yang, G. Studies on organosoluble polyimides based on a series of new asymmetric and symmetric dianhydrides: Structure/solubility and thermal property relationships. Macromol. Res. 2012, 20, 10-20.  doi: 10.1007/s13233-012-0007-4

    30. [30]

      Razafimahefa, L.; Chlebicki, S.; Vroman, I.; Devaux, E. Effect of nanoclay on the dyeing ability of PA6 nanocomposite fibers. Dyes Pigments 2005, 66, 55-60.  doi: 10.1016/j.dyepig.2004.08.012

    31. [31]

      Trigo-López, M.; Barrio-Manso, J. L.; Serna, F.; García, F. C.; García, J. M. Crosslinked aromatic polyamides: A further step in high-performance materials. Macromol. Chem. Phys. 2013, 214, 2223-2231.

    32. [32]

      Sheng, S. R.; Pei, X. L.; Huang, Z. Z.; Liu, X. L.; Song, C. S. Novel soluble fluorinated aromatic polyamides derived from 2-(4-trifluoromethylphenoxy)terephthaloyl chloride with various aromatic diamines. Eur. Polym. J. 2009, 45, 230-236.  doi: 10.1016/j.eurpolymj.2008.10.023

    33. [33]

      Yuabc, G.; Liu, J.; Wu, S.; Tan, H.; Panab, C. Novel thermally stable and organosoluble aromatic polyamides with main chain phenyl-1,3,5-triazine moieties. Polym. Degrad. Stabil. 2012, 97, 1807-1814.  doi: 10.1016/j.polymdegradstab.2012.05.040

    34. [34]

      Kim, E. M.; Choi, J. H. Synthesis of cationized anthraquinone dyes and their dyeing properties for meta -aramid fiber. Fibers Polym. 2013, 14, 2054-2060.  doi: 10.1007/s12221-013-2054-7

    35. [35]

      Fu, C.; Gu, L. Structures and properties of easily dyeable copolyesters and their fibers respectively modified by three kinds of diols. J. Appl.Polym. Sci. 2013, 128, 3964-3973.  doi: 10.1002/app.v128.6

  • 加载中
    1. [1]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    2. [2]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    3. [3]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    4. [4]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    5. [5]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    6. [6]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    7. [7]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    10. [10]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

Metrics
  • PDF Downloads(0)
  • Abstract views(875)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return