Citation: Sen Xu, Pengfei Chang, Bingjie Zhao, Muhammad Adeel, Sixun Zheng. Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 197-207. doi: 10.1007/s10118-019-2199-y shu

Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions

  • Corresponding author: Sixun Zheng, szheng@sjtu.edu.cn
  • Received Date: 2 November 2018
    Revised Date: 16 November 2018
    Accepted Date: 19 November 2018
    Available Online: 13 December 2018

  • In this contribution, we reported a novel approach to crosslink poly(ε-caprolactone) (PCL) via supramolecular hydrogen bonding interactions. First, a series of octa-armed poly(ε-caprolactone) stars with polyhedral oligomeric silsesquioxane (POSS) cores were synthesized via the ring-opening polymerizations. Thereafter, the arm ends of organic-inorganic star-shaped PCLs were reacted with 2-(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1H]-pyrimidinone to obtain 2-ureido-4[1H]-pyrimidone (UPy)-terminated PCL stars. Notably, the UPy-terminated PCL stars were physically crosslinked, which was evidenced by means of dynamic mechanical thermal analysis (DMTA) and rheological analysis. Owing to the formation of the physically-crosslinked networks, the organic-inorganic PCL stars displayed significant shape memory properties with about 100% of shape recovery, which was in marked contrast to the PCL stars without UPy termini.
  • 加载中
    1. [1]

      Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. 2002, 41(12), 2034-2057.  doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M

    2. [2]

      Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37(12), 1720-1763.  doi: 10.1016/j.progpolymsci.2012.06.001

    3. [3]

      Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79-120.

    4. [4]

      Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267.  doi: 10.1038/nature08863

    5. [5]

      Liu, C.; Qin, H.; Mather, P. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17(16), 1543-1558.  doi: 10.1039/b615954k

    6. [6]

      Zotzmann, J.; Behl, M.; Hofmann, D.; Lendlein, A. Reversible triple-shape effect of polymer networks containing polypentadecalactone-and poly (ε-caprolactone)-segments. Adv. Mater. 2010, 22(31), 3424-3429.  doi: 10.1002/adma.200904202

    7. [7]

      Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445-471.  doi: 10.1146/annurev-matsci-082908-145419

    8. [8]

      Metzger, M. F.; Wilson, T. S.; Schumann, D.; Matthews, D. L.; Maitland, D. J. Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed. Microdevices 2002, 4(2), 89-96.  doi: 10.1023/A:1014674912979

    9. [9]

      Small IV, W.; Wilson, T. S.; Benett, W. J.; Loge, J. M.; Maitland, D. J. Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 2005, 13(20), 8204-8213.  doi: 10.1364/OPEX.13.008204

    10. [10]

      Metcalfe, A.; Desfaits, A. C.; Salazkin, I.; Yahia, L. H.; Sokolowski, W. M.; Raymond, J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 2003, 24(3), 491-497.  doi: 10.1016/S0142-9612(02)00362-9

    11. [11]

      Yu, X.; Zhou, S.; Zheng, X.; Xiao, Y.; Guo, T. Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J. Phys. Chem. C 2009, 113(41), 17630-17635.  doi: 10.1021/jp9022986

    12. [12]

      Huang, W. M.; Song, C.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H.; Tang, C.; Ding, Z.; Zhang, J., Shaping tissue with shape memory materials. Adv. Drug Deliver. Rev. 2013, 65(4), 515-535.  doi: 10.1016/j.addr.2012.06.004

    13. [13]

      Kim, B. K.; Lee, S. Y.; Xu, M. Polyurethanes having shape memory effects. Polymer 1996, 37(26), 5781-5793  doi: 10.1016/S0032-3861(96)00442-9

    14. [14]

      Schuh, C.; Schuh, K.; Lechmann, M. C.; Garnier, L.; Kraft, A. Shape-memory properties of segmented polymers containing aramid hard segments and polycaprolactone soft segments. Polymers 2010, 2(2), 71-85  doi: 10.3390/polym2020071

    15. [15]

      Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly(ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587-592.  doi: 10.1021/bm049477j

    16. [16]

      Yoshii, F.; Darwis, D.; Mitomo, H.; Makuuchi, K. Crosslinking of poly(ε-caprolactone) by radiation technique and its biodegradability. Radiat. Phys. Chem. 2000, 57(3-6), 417-420.  doi: 10.1016/S0969-806X(99)00449-1

    17. [17]

      Wang, S.; Yaszemski, M. J.; Gruetzmacher, J. A.; Lu, L. Photo-crosslinked poly(ε-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical properties. Polymer 2008, 49(26), 5692-5699.  doi: 10.1016/j.polymer.2008.10.021

    18. [18]

      Garle, A.; Kong, S.; Ojha, U.; Budhlall, B. M., Thermoresponsive semicrystalline poly(ε-caprolactone) networks: Exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl. Mater. Interfaces 2012, 4(2), 645-657.  doi: 10.1021/am2011542

    19. [19]

      Deshmukh, P.; Yoon, H.; Cho, S.; Yoon, S. Y.; Zore, O. V.; Kim, T.; Chung, I.; Ahn, S. K.; Kasi, R. M. Impact of poly(ε-caprolactone) architecture on the thermomechanical and shape memory properties. J. Polym. Sci., Part A: Polym. Chem. 2017, 55(20), 3424-3433.  doi: 10.1002/pola.v55.20

    20. [20]

      Alvarado-Tenorio, B.; Romo-Uribe, A.; Mather, P. T. Nanoscale order and crystallization in POSS-PCL shape memory molecular networks. Macromolecules 2015, 48(16), 5770-5779.  doi: 10.1021/acs.macromol.5b01409

    21. [21]

      Baker, R. M.; Henderson, J. H.; Mather, P. T. Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 2013, 1(38), 4916-4920.  doi: 10.1039/c3tb20810a

    22. [22]

      Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2016, 2(1), e1501297.  doi: 10.1126/sciadv.1501297

    23. [23]

      Ozturk, G.; Long, T. E. Michael addition for crosslinking of poly(caprolactone)s. J. Polym. Sci., Part A: Polym. Chem. 2009, 47(20), 5437-5447.  doi: 10.1002/pola.v47:20

    24. [24]

      Liu, Y.; Li, Y.; Yang, G.; Zheng, X.; Zhou, S. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl. Mater. Interfaces 2015, 7(7), 4118-4126.  doi: 10.1021/am5081056

    25. [25]

      Mya, K. Y.; Gose, H. B.; Pretsch, T.; Bothe, M.; He, C. Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 2011, 21(13), 4827-4836.  doi: 10.1039/c0jm04459h

    26. [26]

      Zhang, Y.; Wang, Q.; Wang, C.; Wang, T. High-strain shape memory polymer networks crosslinked by SiO2. J. Mater. Chem. 2011, 21(25), 9073-9078  doi: 10.1039/c1jm11022e

    27. [27]

      Defize, T.; Riva, R.; Raquez, J. M.; Dubois, P.; Jérôme, C.; Alexandre, M. Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network. Macromol. Rapid Comm. 2011, 32(16), 1264-1269.  doi: 10.1002/marc.v32.16

    28. [28]

      Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva, R.; Jérôme, C. Comprehensive study of the thermo-reversibility of Diels-Alder based PCL polymer networks. Polymer 2016, 84, 234-242.  doi: 10.1016/j.polymer.2015.11.055

    29. [29]

      Lee, K. M.; Knight, P. T.; Chung, T.; Mather, P. T., Polycaprolactone-POSS chemical/physical double networks. Macromolecules 2008, 41(13), 4730-4738.  doi: 10.1021/ma800586b

    30. [30]

      Alvarado-Tenorio, B.; Romo-Uribe, A.; Mather, P. T. Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules, 2011, 44, 5682–5692  doi: 10.1021/ma2005662

    31. [31]

      Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296(5573), 1673-1676.  doi: 10.1126/science.1066102

    32. [32]

      Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428(6982), 487-492.  doi: 10.1038/nature02388

    33. [33]

      Jing, X.; Mi, H. Y.; Huang, H. X.; Turng, L. S. Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone)(PCL) blends as self-knotting sutures. J. Mech. Behav. Biomed. Mater. 2016, 64, 94-103.  doi: 10.1016/j.jmbbm.2016.07.023

    34. [34]

      Huang, W. M.; Yang, B.; Fu, Y. Q. In polyurethane shape memory polymers. CRC Press: 2011.

    35. [35]

      Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 1998, 120(27), 6761-6769.  doi: 10.1021/ja974112a

    36. [36]

      Söntjens, S. H.; Sijbesma, R. P.; van Genderen, M. H.; Meijer, E. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc. 2000, 122(31), 7487-7493.  doi: 10.1021/ja000435m

    37. [37]

      Kushner, A. M.; Gabuchian, V.; Johnson, E. G.; Guan, Z. Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 2007, 129(46), 14110-14111.  doi: 10.1021/ja0742176

    38. [38]

      Zhu, Y.; Hu, J.; Liu, Y. Shape memory effect of thermoplastic segmented polyurethanes with self-complementary quadruple hydrogen bonding in soft segments. Eur. Phys. J. E 2009, 28(1), 3-10.  doi: 10.1140/epje/i2008-10395-2

    39. [39]

      Wang, L.; Zhang, C.; Cong, H.; Li, L.; Zheng, S.; Li, X.; Wang, J., Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies. J. Phys. Chem. B 2013, 117(27), 8256-8268.  doi: 10.1021/jp402084u

    40. [40]

      Folmer, B. J.; Sijbesma, R.; Versteegen, R.; Van der Rijt, J.; Meijer, E. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 2000, 12(12), 874-878.  doi: 10.1002/(ISSN)1521-4095

    41. [41]

      Dankers, P. Y.; Adams, P.; Löwik, D. W.; van Hest, J. C.; Meijer, E. Convenient solid-phase synthesis of ureido-pyrimidinone modified peptides. Eur. J. Org. Chem. 2007, 2007(22), 3622-3632.  doi: 10.1002/(ISSN)1099-0690

    42. [42]

      Winter, H. H.; Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point J. Rheol. 1986, 30(20), 367-382

    43. [43]

      Chambon, F.; Winter, H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry, J. Rheol. 1987, 31, 683-97;  doi: 10.1122/1.549955

    44. [44]

      Winter, H. H.; Mours, M. Rheology of polymers near their liquid-solid transitions Adv. Polym. Sci. 1997, 134, 165-234;  doi: 10.1007/3-540-68449-2

    45. [45]

      Soenen, H.; Berghmans, H.; Winter, H. H.; Overbergh, N. Ordering and structure formation in triblock copolymer solutions. Part II. Small angle X-ray scattering and calorimetric observations Polymer 1997, 38, 5653-5660;

    46. [46]

      Lin, Y. G.; Mallin, D. T.; Chien, J. C. W.; Winter, H. H. Dynamical mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene), Macromolecules 1991, 24, 850-854.  doi: 10.1021/ma00004a006

  • 加载中
    1. [1]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    2. [2]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    3. [3]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    4. [4]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    5. [5]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    6. [6]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    7. [7]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    8. [8]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    9. [9]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    10. [10]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    11. [11]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    12. [12]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    13. [13]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    14. [14]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    15. [15]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    18. [18]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    19. [19]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    20. [20]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

Metrics
  • PDF Downloads(0)
  • Abstract views(921)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return