Citation: Liang Fang, Wen-Peng Zhao, Chao Han, Chun-Yu Zhang, Heng Liu, Yan-Ming Hu, Xue-Quan Zhang. 1,3-Butadiene Polymerizations Catalyzed by Cobalt and Iron Dichloride Complexes Bearing Pyrazolylimine Ligands[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 462-470. doi: 10.1007/s10118-019-2198-z shu

1,3-Butadiene Polymerizations Catalyzed by Cobalt and Iron Dichloride Complexes Bearing Pyrazolylimine Ligands

  • Corresponding author: Chun-Yu Zhang, cyzhang@ciac.ac.cn Heng Liu, hengliu@ciac.ac.cn
  • †These authors contribute equally to this work
  • Received Date: 27 September 2018
    Revised Date: 30 October 2018
    Accepted Date: 1 January 2018
    Available Online: 26 November 2018

  • A series of pyrazolylimine ligated Co(II) and Fe(II) complexes with general formula of (PhC=N(C6H3(R1)2-2,6)(C3HN2(R2)2-3,5)MtCl2 (R1 = Me, R2 = H, Mt = Co (1a), Fe (2a); R1 = Me, R2 = Me, Mt = Co (1b), Fe (2b); R1 = iPr, R2 = H, Mt = Co (1c), Fe (2c); R1 = iPr, R2 = Me, Mt = Co (1d), Fe (2d); R1 = iPr, R2 = Ph, Mt = Co (1e), Fe (2e)) were synthesized and thoroughly characterized. Determined by single crystal X-ray diffraction, complexes 1b and 2b revealed dimeric structures, in which distorted trigonal bipyramid geometries were adopted for each metal centers. In the presence of ethylaluminum sesquichloride (EASC), all the cobalt complexes displayed high activities in 1,3-butadiene polymerization, affording polybutadienes with predominant cis-1,4 contents (up to 97.0%). Influences of ligand structure and polymerization parameters on catalytic performance were investigated systematically. For pyrazolylimine iron(II) dichloride complexes, the catalytic activities and microstructures of the resultant polybutadienes were highly dependent on ligand structures and polymerization conditions. For complex 2a, changing cocatalyst from trialkyl aluminums to methyl aluminoxane (MAO) led to an shift of selectivity from high cis-1,4- to trans-1,4-/1,2- manner. Being activated by MAO, complexes 2a and 2b gave trans-1,4-/1,2- binary polybutadienes, while complexes 2c, 2d, and 2e afforded cis-1,4- enriched polymers.
  • 加载中
    1. [1]

      Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization. Neodymium Based Ziegler Catalysts Fundamental Chemistry 2006, 1-154.

    2. [2]

      Zhang, Z.; Cui, D.; Wang, B.; Liu, B.; Yang, Y. Polymerization of 1,3-conjugated dienes with rare-earth metal precursors. Struct. Bond. 2010, 137, 49.  doi: 10.1007/978-3-642-12811-0

    3. [3]

      Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. Well-defined transition metal complexes with phosphorus and nitrogen ligands for 1,3-dienes polymerization. Coord. Chem. Rev. 2010, 254, 661-676.  doi: 10.1016/j.ccr.2009.09.023

    4. [4]

      Porri, L.; Giarrusso, A.; Ricci, G. Recent views on the mechanism of diolefin polymerization with transition metal initiator systems. Prog. Polym. Sci. 1991, 16, 405-441.  doi: 10.1016/0079-6700(91)90024-F

    5. [5]

      Thiele, S. K. H.; Wilson, D. R. Alternate transition metal complex based diene polymerization. J. Macromol. Sci. Polym. Rev. 2003, C43, 581-628.  doi: 10.1081/MC-120025979

    6. [6]

      Ricci, G.; Panagia, A.; Porri, L. Polymerization of 1,3-dienes with catalysts based on mono- and bis-cyclopentadienyl derivatives of vanadium. Polymer 1996, 37, 363-365.  doi: 10.1016/0032-3861(96)81112-8

    7. [7]

      van der Linden, A.; Schaverien, C. J.; Meijboom, N.; Ganter, C.; Orpen, A. G. Polymerization of .alpha.-olefins and butadiene and catalytic cyclotrimerization of 1-alkynes by a new class of group IV catalysts. Control of molecular weight and polymer microstructure via ligand tuning in sterically hindered chelating phenoxide titanium and zirconium species. J. Am. Chem. Soc. 1995, 117, 3008-3021.  doi: 10.1021/ja00116a006

    8. [8]

      Jang, Y.; Choi, D. S.; Han, S. Effects of tris(pentafluorophenyl)borane on the activation of a metal alkyl-free Ni-based catalyst in the polymerization of 1,3-butadiene. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 1164-1173.  doi: 10.1002/pola.11062

    9. [9]

      Sivaram, S.; Upadhyay, V. K. synthesis of high cis-polymerization usging cobalt(II) 2-ethylhexoate modified triethylaluminum catalyst. J. Macromol. Sci. Pur. 1992, 29, 13-19.  doi: 10.1080/10101329208054559

    10. [10]

      Ashitaka, H.; Ishikawa, H.; Ueno, H.; Nagasaka, A. Syndiotactic 1,2-polybutadiene with Co-CS2 catalyst system. 1. Preparation, properties, and application of highly crystalline syndiotactic 1,2-polybutadiene. J. Polym. Sci., PartA: Polym. Chem. 1983, 21, 1853-1860.  doi: 10.1002/pol.1983.170210625

    11. [11]

      Wang, F.; Liu, H.; Zheng, W.; Guo, J.; Zhang, C.; Zhao, L.; Zhang, H.; Hu, Y.; Bai, C.; Zhang, X. Fully-reversible and semi-reversible coordinative chain transfer polymerizations of 1,3-butadiene with neodymium-based catalytic systems. Polymer 2013, 54, 6716-6724.  doi: 10.1016/j.polymer.2013.10.031

    12. [12]

      Nishii, K.; Kang, X.; Nishiura, M.; Luo, Y.; Hou, Z. Regio- and stereospecific living polymerization and copolymerization of (E)-1,3-pentadiene with 1,3-butadiene by half-sandwich scandium catalysts. Dalton Trans. 2013, 42, 9030-9032.  doi: 10.1039/c3dt50357g

    13. [13]

      Hu, Y.; Dong, W.; Masuda, T. Novel methylaluminoxane-activated neodymium isopropoxide catalysts for 1,3-butadiene polymerization and 1,3-butadiene/isoprene copolymerization. Macromol. Chem. Phys. 2013, 214, 2172-2180.  doi: 10.1002/macp.201300383

    14. [14]

      Gibson, V. C.; Redshaw, C.; Solan, G. A. Bis(imino)pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107, 1745-1776.  doi: 10.1021/cr068437y

    15. [15]

      Wang, Z.; Solan, G. A.; Mahmood, Q.; Liu, Q.; Ma, Y.; Hao, X.; Sun, W. H. Bis(imino)pyridines incorporating doubly fused eight-membered rings as conformationally flexible supports for cobalt ethylene polymerization catalysts. Organometallics 2018, 37, 380-389.  doi: 10.1021/acs.organomet.7b00809

    16. [16]

      Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev. 2015, 115, 12091-12137.  doi: 10.1021/cr500370f

    17. [17]

      Li, M.; Shu, X.; Cai, Z.; Eisen, M. S. Synthesis, Structures, and Norbornene Polymerization Behavior of Neutral Nickel(II) and Palladium(II) Complexes Bearing Aryloxide Imidazolidin-2-imine Ligands. Organometallics 2018, 37, 1172-1180.  doi: 10.1021/acs.organomet.8b00059

    18. [18]

      Ricci, G.; Morganti, D.; Sommazzi, A.; Santi, R.; Masi, F. Polymerization of 1,3-dienes with iron complexes based catalysts: Influence of the ligand on catalyst activity and stereospecificity. J. Mol. Catal. A Chem. 2003, 204-205, 287-293.  doi: 10.1016/S1381-1169(03)00310-8

    19. [19]

      Ricci, G. Forni, A. Boglia, A. Motta, T., Synthesis, structure, and butadiene polymerization behavior of alkylphosphine cobalt(II) complexes. J. Mo. Catal. A Chem. 2005, 226, 235-241.  doi: 10.1016/j.molcata.2004.10.022

    20. [20]

      Nath, D. C. D.; Shiono, T.; Ikeda, T. Cis-specific living polymerization of 1,3-butadiene with CoCl2 and methylaluminoxane. Macromol. Chem. Phys. 2002, 203, 756-760.  doi: 10.1002/(ISSN)1521-3935

    21. [21]

      Endo, K.; Hatakeyama, N. Stereospecific and molecular weight-controlled polymerization of 1,3-butadiene with Co(acac)3-MAO catalyst. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2793-2798.  doi: 10.1002/pola.1258

    22. [22]

      Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Synergetic effect of monomer functional group coordination in catalytic insertion polymerization. J. Am. Chem. Soc. 2017, 139, 6823-6826.  doi: 10.1021/jacs.7b03087

    23. [23]

      Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3-dienes. ACS Macro Lett. 2016, 5, 777-780.  doi: 10.1021/acsmacrolett.6b00321

    24. [24]

      Gong, D.; Jia, X.; Wang, B.; Wang, F.; Zhang, C.; Zhang, X.; Jiang, L.; Dong, W. Highly trans-1,4 selective polymerization of 1,3-butadiene initiated by iron(III) bis(imino)pyridyl complexes. Inorg. Chim. Acta 2011, 373, 47-53.  doi: 10.1016/j.ica.2011.03.047

    25. [25]

      Gong, D.; Jia, X.; Wang, B.; Zhang, X.; Huang, K. W. Trans-1,4 selective polymerization of 1,3-butadiene with symmetry pincer chromium complexes activated by MMAO. J. Organomet. Chem. 2014, 766, 79-85.  doi: 10.1016/j.jorganchem.2014.05.018

    26. [26]

      Gong, D.; Wang, B.; Cai, H.; Zhang, X.; Jiang, L. Synthesis, characterization and butadiene polymerization studies of cobalt(II) complexes bearing bisiminopyridine ligand. J. Organomet. Chem. 2011, 696, 1584-1590.  doi: 10.1016/j.jorganchem.2011.01.015

    27. [27]

      Gong, D.; Wang, B.; Bai, C.; Bi, J.; Wang, F.; Dong, W.; Zhang, X.; Jiang, L. Metal dependent control of cis-/trans-1,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine. Polymer 2009, 50, 6259-6264.  doi: 10.1016/j.polymer.2009.10.054

    28. [28]

      Jia, X.; Liu, H.; Hu, Y.; Dai, Q.; Bi, J.; Bai, C.; Zhang, X. Highly active and cis-1,4 selective polymerization of 1,3-butadiene catalyzed by cobalt(II) complexes bearing alpha-diimine ligands. Chin. J. Catal. 2013, 34, 1560-1569.  doi: 10.1016/S1872-2067(12)60625-1

    29. [29]

      Alnajrani, M. N.; Mair, F. S. Synthesis and characterization of [small beta]-triketimine cobalt complexes and their behaviour in the polymerization of 1,3-butadiene. Dalton Trans. 2014, 43, 15727-15736.  doi: 10.1039/C4DT02196G

    30. [30]

      Alnajrani, M. N.; Mair, F. S. The behaviour of [small beta]-triketimine cobalt complexes in the polymerization of isoprene. RSC Adv. 2015, 5, 46372-46385.  doi: 10.1039/C5RA06792H

    31. [31]

      Gong, D.; Wang, B.; Jia, X.; Zhang, X. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand. Dalton Trans. 2014, 43, 4169-4178.  doi: 10.1039/c3dt52708e

    32. [32]

      Chandran, D.; Kwak, C. H.; Ha, C. S.; Kim, I. Polymerization of 1,3-butadiene by bis(salicylaldiminate)cobalt(II) catalysts combined with organoaluminium cocatalysts. Catal. Today 2008, 131, 505-512.  doi: 10.1016/j.cattod.2007.10.068

    33. [33]

      Guo, J.; Zhang, C.; Bi, J.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Cobalt complexes bearing pyridine-imino ligands with bulky aryl substituents: Synthesis, characterization, and 1,3-butadiene polymerization behaviors. J. Organomet. Chem. 2015, 414-421.  doi: 10.1016/j.jorganchem.2015.05.004

    34. [34]

      Ai, P.; Chen, L.; Guo, Y.; Jie, S.; Li, B. G. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing imino- or amino-pyridyl alcohol ligands in combination with ethylaluminum sesquichloride. J. Organomet. Chem. 2012, 705, 51-58.  doi: 10.1016/j.jorganchem.2012.01.013

    35. [35]

      Wang, B.; Gong, D.; Bi, J.; Dai, Q.; Zhang, C.; Hu, Y.; Zhang, X.; Jiang, L. Synthesis, characterization and 1,3-butadiene polymerization behaviors of cobalt complexes bearing 2-pyrazolyl-substituted 1,10-phenanthroline ligands. Appl. Organomet. Chem. 2013, 27, 245-252.  doi: 10.1002/aoc.v27.4

    36. [36]

      Guo, J.; Liu, H.; Bi, J.; Zhang, C.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Pyridine–oxazoline and quinoline-oxazoline ligated cobalt complexes: Synthesis, characterization, and 1,3-butadiene polymerization behaviors. Inorg. Chim. Acta 2015, 435, 305-312.  doi: 10.1016/j.ica.2015.07.013

    37. [37]

      Appukuttan, V.; Zhang, L.; Ha, J. Y.; Chandran, D.; Bahuleyan, B. K.; Ha, C. S.; Kim, I. Stereospecific polymerizations of 1,3-butadiene catalyzed by Co(II) complexes ligated by 2,6-bis(benzimidazolyl)pyridines. J. Mol. Catal. A Chem. 2010, 325, 84-90.  doi: 10.1016/j.molcata.2010.04.002

    38. [38]

      Wang, G.; Jiang, X.; Zhao, W.; Sun, W.; Yao, W.; He, A. Catalytic behavior of Co(II) complexes with 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridine ligands on isoprene stereospecific polymerization. J. Appl. Polym. Sci. 2014, 131, 39703-39708.  doi: 10.1002/app.39703

    39. [39]

      Appukuttan, V.; Zhang, L.; Ha, C. S.; Kim, I. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer 2009, 50, 1150-1158.  doi: 10.1016/j.polymer.2008.12.047

    40. [40]

      Liu, H.; Wang, F.; Jia, X.; Liu, L.; Bi, J.; Zhang, C.; Zhao, L.; Bai, C.; Hu, Y.; Zhang, X. Synthesis, characterization, and 1,3-butadiene polymerization studies of Co(II), Ni(II), and Fe(II) complexes bearing 2-(N-arylcarboximidoylchloride)quinoline ligand. J. Mol. Catal. A Chem. 2014, 391, 25-35.  doi: 10.1016/j.molcata.2014.04.008

    41. [41]

      Liu, H.; Jia, X.; Wang, F.; Dai, Q.; Wang, B.; Bi, J.; Zhang, C.; Zhao, L.; Bai, C.; Hu, Y.; Zhang, X. Synthesis of bis(N-arylcarboximidoylchloride)pyridine cobalt(ii) complexes and their catalytic behavior for 1,3-butadiene polymerization. Dalton Trans. 2013, 42, 13723-13732.  doi: 10.1039/c3dt51403j

    42. [42]

      Liu, H.; Yang, S. Z.; Wang, F.; Bai, C. X.; Hu, Y. M.; Zhang, X. Q. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing pyridine-2-imidate ligands. Chinese J. Polym. Sci. 2016, 34, 1060-1069.  doi: 10.1007/s10118-016-1825-1

    43. [43]

      Liu, H.; Zhuang, R.; Dong, B.; Wang, F.; Hu, Y. M.; Zhang, X. Q. Mono- andbinuclear cobalt(II) complexes supported by quinoline-2-imidate ligands: synthesis, characterization, and 1,3-butadiene polymerization. Chinese J. Polym. Sci. 2018, 36, 943-952.  doi: 10.1007/s10118-018-2097-8

    44. [44]

      Liu, H.; Wang, F.; Han, C.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Cobalt and nickel complexes supported by 2,6-bis(imidate)pyridyl ligands: Synthesis, characterization, and 1,3-butadiene polymerization studies. Inorg. Chim. Acta 2015, 434, 135-142.  doi: 10.1016/j.ica.2015.05.022

    45. [45]

      Wang, Y.; Lin, S.; Zhu, F.; Gao, H.; Wu, Q. Dinuclear nickel (II) complexes bearing two pyrazolylimine ligands: Synthesis characterization, and catalytic properties for vinyl-type polymerization of norbornene. Eur. Polym. J. 2008, 44, 2308-2317.  doi: 10.1016/j.eurpolymj.2008.04.043

    46. [46]

      Han, C.; Liu, H.; Yang, F.; Hu, Y.; Zhang, X. Pyrazolylimine Ni(Ⅱ) complexes: synthesis, characterization, and catalytic behaviors for 1, 3-butadiene polymerization. Chin. J. Appl. Chem. 2015, 32, 909-915.  doi: 10.11944/j.issn.1000-0518.2015.08.140425

    47. [47]

      Jie, S.; Ai, P.; Li, B. Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes. Dalton Trans. 2011, 40, 10975-10982.  doi: 10.1039/c1dt11073j

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    3. [3]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    4. [4]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    5. [5]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    6. [6]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    7. [7]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    8. [8]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    9. [9]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    10. [10]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    11. [11]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    12. [12]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    13. [13]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    14. [14]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    17. [17]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    20. [20]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

Metrics
  • PDF Downloads(0)
  • Abstract views(773)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return