Citation: Vladislav A. Tuskaev, Svetlana Ch. Gagieva, Dmitry A. Kurmaev, Viktor G. Vasil'ev, Nikolay A. Kolosov, Sergey V. Zubkevich, Elena S. Mikhaylik, Evgenii K. Golubev, Galina G. Nikiforova, Pavel A. Zhizhko, Olga A. Serenko, Boris M. Bulychev. Binuclear and Hexanuclear Ti(IV) Complexes Supported by [OOOO]4–-type Ligand for Preparing Disentangled UHMWPE[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 471-477. doi: 10.1007/s10118-019-2197-0 shu

Binuclear and Hexanuclear Ti(IV) Complexes Supported by [OOOO]4–-type Ligand for Preparing Disentangled UHMWPE

  • Corresponding author: Vladislav A. Tuskaev, tuskaev@yandex.ru
  • Received Date: 8 September 2018
    Revised Date: 3 November 2018
    Accepted Date: 1 January 2018
    Available Online: 4 December 2018

  • Binuclear and hexanuclear titanium complexes stabilized by tetradentate [OOOO]4–-type ligand were active in ethylene polymerization in the presence of Et2AlCl/Bu2Mg binary co-catalyst, giving high molecular weight polyethylene. The binuclear complex showed significantly higher catalytic activity and thermal stability in comparison to mononuclear analogue. Ultra high molecular weight polyethylene (UHMWPE) samples were processed by a solid-state uniaxial deformation into high-strength (up to 2.5 GPa) and high-modulus (over 100 GPa) oriented film tapes, which indirectly indicates a low degree of entanglements between the macromolecular chains.
  • 加载中
    1. [1]

      Kurtz, S. M. in The UHMWPE Handbook, Ultra high molecular weight polyethylene in total joint replacement. Elsevier, Academic Press, New York, 2004, p.397

    2. [2]

      Smith, P.; Chanzy, H. D.; Rotzinger, B. P. Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength fibres. Polym. Commun. 1985, 26, 258-261.

    3. [3]

      Smith, P.; Chanzy, H. D.; Rotzinger, B. P. Drawing of virgin ultrahigh molecular weight polyethylene: an alternative route to high strength/high modulus materials. Mater. Sci. 1987, 22, 523-531.

    4. [4]

      Wang, L. H.; Porter, R. S. Rolling and roll-drawing of ultrahigh molecular weight polyethylene reactor powders. J. Appl. Polym. Sci. 1991, 43, 1559-1564.  doi: 10.1002/app.1991.070430819

    5. [5]

      Rastogi, S.; Yao, Y.; Ronca, S.; Bos, J.; van der Eem, J. Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route. Macromolecules 2011, 44, 5558-5568.  doi: 10.1021/ma200667m

    6. [6]

      Yao, Y.; Jiang, S.; Rastogi, S. 13C Solid state NMR characterization of structure and orientation development in the narrow and broad molar mass disentangled UHMWPE. Macromolecules 2014, 47, 1371-1382.  doi: 10.1021/ma402232c

    7. [7]

      Ozerin, A. N.; Ivanchev, S. S.; Chvalun, S. N.; Aulov, V. A.; Ivancheva, N. I.; Bakeev, N. F. Properties of oriented film tapes prepared via solid-state processing of a nascent ultrahigh-molecular-weight polyethylene reactor powder synthesized with a postmetallocene catalyst. Polymer Science, Ser. A. 2012, 54, 950-954.  doi: 10.1134/S0965545X12100033

    8. [8]

      Solov’ev, M. V.; Gagieva, S. Ch.; Tuskaev, V. A.; Bravaya, N. M.; Gadalova, O. E.; Khrustalev, V. N.; Borissova, A. O.; Bulychev, B. M. Novel titanium(IV) complexes with 2,4-di-tert-butyl-6-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenol in ethene polymerization. Russ. Chem. Bull. 2011, 60, 2227-2235.  doi: 10.1007/s11172-011-0342-1

    9. [9]

      Rishina, L. A.; Lalayan, S. S.; Gagieva, S. Ch.; Tuskaev, V. A.; Perepelitsyna, E. O.; Kissin, Y. V. Polymers of propylene and higher 1-alkenes produced with postmetallocene complexes containing a saligenin-type ligand. Polymer 2013, 54, 6526-6235.  doi: 10.1016/j.polymer.2013.09.052

    10. [10]

      Tuskaev, V. A.; Gagieva, S. Ch.; Solov'ev, M. V.; Kurmaev, D. A.; Kolosov, N. A.; Fedyanin, I. V.; Bulychev, B. M. Coordination compounds of titanium (IV) and 2-hydroxymethylphenol derivatives: Their synthesis, structure and catalytic activity in ethylene and 1-hexene polymerization. J. Organomet. Chem. 2015, 797, 159-164.  doi: 10.1016/j.jorganchem.2015.08.017

    11. [11]

      Rishina, L. A.; Lalayan, S. S.; Gagieva, S. Ch.; Tuskaev, V. A.; Shchegolikhin, A. N.; Shashkin, D. P.; Kissin, Y. V. Titanium complex containing a saligenin ligand - new universal post-metallocene polymerization catalyst: Copolymerization of ethylene with higher α-olefins. J. Res. Updates Polym. Sci. 2015, 3, 216-226.  doi: 10.6000/1929-5995.2014.03.04.3

    12. [12]

      Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Zvukova, T. M.; Bulychev, B. M. Novel bi- and hexanuclear titanium (IV) complexes: Synthesis, structure and catalytic activities in oligo- and polymerization of 1-hexene. J. Organomet. Chem. 2016, 802, 9-14.  doi: 10.1016/j.jorganchem.2015.11.007

    13. [13]

      Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Sizov, A. I.; Mikhaylik, E. S.; Golubev, E. K.; Bulychev, B. M. Chloride- and alkoxo-titanium(IV) complexes stabilized by 2-hydroxymethylphenol derivative as catalysts for the formation of ultra-high molecular weight polyethylene nascent reactor powders. Polyhedron 2017, 122, 179-183.  doi: 10.1016/j.poly.2016.11.007

    14. [14]

      Tuskaev, V. A.; Gagieva, S. Ch.; Kurmaev, D. A.; Zubkevich, S. V.; Kolosov, N. A.; Golubev, E. K.; Nikiforova, G. G.; Khrustalev, V. N.; BulychevB. M. Novel titanium(IV) complexes stabilized by 2-hydroxybenzyl alcohol derivatives as catalysts for UHMWPE production. J. Organomet. Chem. 2018, 867, 266-272.  doi: 10.1016/j.jorganchem.2017.12.027

    15. [15]

      Delferro, M.; Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 2011, 111, 2450-2485.  doi: 10.1021/cr1003634

    16. [16]

      Ainooson, M.; Meyer, F., in Comprehensive Inorganic Chemistry II (Second Edition), Volume 8: Coordination and Organometallic Chemistry, 2013, 433–458.

    17. [17]

      Chen, Z.; Yao, E.; Wang, J.; Gong, X.; Ma, Y. Ethylene (co)polymerization by binuclear nickel phenoxyiminato catalysts with cofacial orientation. Macromolecules 2016, 49, 8848-8854.  doi: 10.1021/acs.macromol.6b02078

    18. [18]

      Chen, Z.; Zhao, X.; Gong, X.; Xu, D.; Ma, Y. Macrocyclic trinuclear nickel phenoxyimine catalysts for high-temperature polymerization of ethylene and isospecific polymerization of propylene. Macromolecules 2017, 50, 6561-6568.  doi: 10.1021/acs.macromol.7b00996

    19. [19]

      Rong, Ch.; Wang, F.; Li, W.; Chen, M. Ethylene polymerization by dinuclear xanthene-bridged imino- and aminopyridyl nickel complexes. Organometallics 2017, 36, 4458-4464.  doi: 10.1021/acs.organomet.7b00698

    20. [20]

      Kissin, Y. V.; Nowlin, T. E.; Mink, R. I.; Brandolini, A. J. A new cocatalyst for metallocene complexes in olefin polymerization. Macromolecules 2000, 33, 4599-4601.  doi: 10.1021/ma992047e

    21. [21]

      Kissin, Y. V.; Mink, R. I.; Brandolini, A. J., Nowlin, T. E. AlR2Cl/MgR2 combinations as universal cocatalysts for Ziegler-Natta, metallocene, and post-metallocene catalysts, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 3271-3285.  doi: 10.1002/pola.v47:13

    22. [22]

      Joo, Y. K.; Zhou, H.; Lee, S. G.; Lee, H. K.; Song, J. K. Solid-state compaction and drawing of nascent reactor powders of ultra-high-molecular-weight polyethylene. J. Appl. Polym. Sci. 2005, 98, 718-730.  doi: 10.1002/(ISSN)1097-4628

    23. [23]

      Ivancheva, N. I.; Sanieva, D. V.; Fedorov, S. P.; Oleinik, I. V.; Oleinik, I. I.; Tolstikov, G. A.; Ivancheva, S. S. Self-immobilized catalysts for ethylene polymerization based on various phenoxyimine titanium halide complexes. Russ. Chem. Bull. 2012, 61, 836-842.  doi: 10.1007/s11172-012-0116-4

    24. [24]

      Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra, P. J. Molar mass and molecular weight distribution determination of uhmwpe synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780-2788.  doi: 10.1021/ma902297b

    25. [25]

      Atiqullah, M.; Hammawa, H.; Hamid, H. Modeling the solubility of ethylene and propylene in a typical polymerization diluent: Some selected situations. Eur. Polym. J. 1998, 34, 1511-1520.  doi: 10.1016/S0014-3057(98)00005-6

    26. [26]

      Wu, J.; Pan, Q.; Rempel, G. L. Solubility of ethylene in toluene and toluene/styrene–butadiene rubber solutions. J. Appl. Polym. Sci. 2005, 96, 645-649.  doi: 10.1002/(ISSN)1097-4628

    27. [27]

      Eskelinen, M. J.; Seppälä, V. Effect of polymerization temperature on the polymerization of ethylene with dicyclopentadienylzirconiumdichloride/methylalumoxane catalyst. Eur. Polym. J. 1996, 32, 331-335.  doi: 10.1016/0014-3057(95)00148-4

    28. [28]

      Jian-ding ,Y.; Zhi-qiang, F.; Wei W. Strong influences of polymerization temperature on ethylene/1-hexene copolymerization catalyzed by (2-PhInd)2ZrCl2/methyl aluminoxane. J Zhejiang Univ. Sci. 2005, 6B,1009-1014.  doi: 10.1631/jzus.2005.B1009

    29. [29]

      van Kimmenade, E. M. E.; Loos, J.; Niemantsverdriet, J. W.; Thüne, P. C. The effect of temperature on ethylene polymerization over flat Phillips model catalysts. Journal of Catalysis 2006, 240, 39-46.  doi: 10.1016/j.jcat.2006.03.002

    30. [30]

      Kissin, Y. V. in Alkene polymerization reactions with transition metal catalysts. Elsevier: Amsterdam, 2008, p.495.

    31. [31]

      Kaminsky, W. Olefin polymerization catalyzed by metallocenes. In Advances in Catalysis, 2002, 46, 90-152.  doi: 10.1016/S0360-0564(02)46022-1

    32. [32]

      Helldörfer, M.; Backhaus, J.; Alt, H. G. The influence of the ligand structure on the properties of (α-diimine)nickel catalysts in the polymerization and oligomerization of ethylene. Inorg. Chim. Acta 2003, 351, 34-42.  doi: 10.1016/S0020-1693(03)00084-7

    33. [33]

      Costa, M. A. S.; Coutinho, F. M. B.; Santa Maria, L. C. The role of prepolymerization on Ziegler-Natta nonsupported catalyst for propylene polymerization. Polymer Reaction Engineering 1994, 2, 241-250.  doi: 10.1080/10543414.1994.10744453

    34. [34]

      Bochmann M. The chemistry of catalyst activation: The case of group 4 polymerization catalysts. Organometallics 2010, 29, 4711-4740.  doi: 10.1021/om1004447

    35. [35]

      Makio, H.; Terao, H.; Iwashita, A.; and Fujita, T. FI catalysts for olefin polymerization—A comprehensive treatment. Chem. Rev. 2011, 111, 2363-2449.  doi: 10.1021/cr100294r

    36. [36]

      Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra P. J. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780-2788.  doi: 10.1021/ma902297b

    37. [37]

      Romano, D.; Andablo-Reyes, E.A.; Ronca, S.; Rastogi, S. Effect of a cocatalyst modifier in the synthesis of ultrahigh molecular weight polyethylene having reduced number of entanglements. J. Polymer Sci., Part A: Polymer Chem. 2013, 51, 1630-1635.  doi: 10.1002/pola.26534

    38. [38]

      Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Buzin, M. I.; Vasil'ev, V. G.; Nikiforova, G. G.; Afanas'ev, E. S.; Zubkevich, S. V.; Kurmaev, D. A.; Kolosov, N. A.; Mikhaylik, E. S.; Golubev, E. K.; Sizov, A. I.; Bulychev, B. M. Novel titanium (IV) diolate complexes: Synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production. J. Organomet. Chem. 2017, 828, 89-95.  doi: 10.1016/j.jorganchem.2016.11.026

    39. [39]

      Tuskaev, V. A.; Gagieva, S. Ch.; Kurmaev D.A.; Khrustalev V. N.; Dorovatovskii P. V.; Mikhaylik E.S.; Golubev E. K.; Buzin M. I.; Zubkevich S. V.; Kolosov N. A.; Nikiforova G. G.; Vasil'ev V. G.; Bulychev B. M. Novel titanium (IV) complexes with 1,2-diolate ligands: Synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production. J. Organomet. Chem. 2018, 877, 85-91.  doi: 10.1016/j.jorganchem.2018.09.014

  • 加载中
    1. [1]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    2. [2]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    5. [5]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    6. [6]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    7. [7]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    8. [8]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    9. [9]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    10. [10]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    11. [11]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    12. [12]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    13. [13]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    14. [14]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    15. [15]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    16. [16]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    17. [17]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    18. [18]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    19. [19]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    20. [20]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

Metrics
  • PDF Downloads(0)
  • Abstract views(756)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return