Citation: Jian-Yun He, Long Cui, Yan-Long Qi, Quan-Quan Dai, Chen-Xi Bai. Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 208-215. doi: 10.1007/s10118-019-2196-1 shu

Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene

  • Corresponding author: Quan-Quan Dai, qqdai@ciac.ac.cn Chen-Xi Bai, baicx@ciac.ac.cn
  • Received Date: 26 September 2018
    Revised Date: 26 October 2018
    Accepted Date: 30 October 2018
    Available Online: 21 November 2018

  • Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stereoselectivity better than those of traditional metallocene and Ziegler-Natta catalysts in diene polymerization. In this work, a series of neodymium organic sulfonate complexes, Nd(CF3SO3)3·xH2yL (x, y: the coordination number; L refers to an organic electron donating ligand, such as acetylacetone (acac), iso-octyl alcohol (IAOH), tributyl phosphate (TBP), etc.), have been synthesized to form the cationic active species in the presence of alkylaluminum such as Al(i-Bu)3, AlEt3, and Al(i-Bu)2H, which display high activities and distinguishing cis-1,4 selectivities (up to 99.9%) for the polymerization of butadiene. The microstructures, yield, molecular weight, and molecular weight distribution of the resulting polymer are well controlled by adjusting electronegativity/steric hindrance of the complexes. In addition, the kinetics, active species, and the possible process of polymerization are also discussed in this article.
  • 加载中
    1. [1]

      McKnight, A. L.; Waymouth, R. M. Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem. Rev. 1998, 98, 2587-2598.  doi: 10.1021/cr940442r

    2. [2]

      Gibson, V. C.; Spitzmesser, S. K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev. 2003, 103, 283-315.  doi: 10.1021/cr980461r

    3. [3]

      Coates, G. W.; Waymouth, R. M. Enantioselective cyclopolymerization: optically active poly(methylene-1,3-cyclopentane). J. Am. Chem. Soc. 1991, 113, 6270-6271.  doi: 10.1021/ja00016a053

    4. [4]

      Schneider, N.; Prosenc, M. H.; Brintzinger, H. H. Cyclopenta[l]phenanthrene titanium trichloride derivatives: Syntheses, crystal structure and properties as catalysts for styrene polymerization. J. Organomet. Chem. 1997, 545, 291-295.

    5. [5]

      Döhring, A.; Jensen, V. R.; Jolly, P. W.; Thiel, W.; Weber, J. C. Donor-ligand-substituted cyclopentadienylchromium(III) complexes: A new class of alkene polymerization catalyst. 2. phosphinoalkyl-substituted systems. Organometallics 2001, 20, 2234-2245.  doi: 10.1021/om010146m

    6. [6]

      Busico, V.; Cipullo, R.; Kretschmer, W. P.; Talarico, G.; Vacatello, M.; Castelli, V. V. A. " Oscillating” metallocene catalysts: How do they oscillate? Angew. Chem. Int. Ed. 2002, 41, 505-508.  doi: 10.1002/1521-3773(20020201)41:3<>1.0.CO;2-9

    7. [7]

      Zhang, H.; Ma, J.; Qian, Y. L.; Huang, J. L. Synthesis and characterization of nitrogen-functionalized cyclopentadienylchromium complexes and their use as catalysts for olefin polymerization. Organometallics 2004, 23, 5681-5688.  doi: 10.1021/om049731o

    8. [8]

      Hou, Z. M.; Kaita, S.; Wakatsuki, Y. Novel polymerization and copolymerization of ethylene, styrene, and/or butadiene by new organolanthanide-based catalysts. Pure Appl. Chem. 2001, 73, 291-294.  doi: 10.1351/pac200173020291

    9. [9]

      Kaita, S.; Yamanaka, M.; Horiuchi, A. C.; Wakatsuki, Y. Butadiene polymerization catalyzed by lanthanide metallocene-alkylaluminum complexes with cocatalysts: metal-dependent control of 1,4-cis/trans stereoselectivity and molecular weight. Macromolecules 2006, 39, 1359-1363.  doi: 10.1021/ma051867q

    10. [10]

      Zhang, L. X.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. M. cationic alkyl rare-earth metal complexes bearing an ancillary bis(phosphinophenyl)amido ligand: A catalytic system for living cis-1,4-polymerization and copolymerization of isoprene and butadiene. Angew. Chem. Int. Ed. 2007, 46, 1909-1913.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Gao, W.; Cui, D. M. Highly cis-1,4 selective polymerization of dienes with homogeneous Ziegler-Natta catalysts based on NCN-pincer rare earth metal dichloride precursors. J. Am. Chem. Soc. 2008, 130, 4984-4991.  doi: 10.1021/ja711146t

    12. [12]

      Wang, D.; Li, S. H.; Liu, X. L.; Gao, W.; Cui, D. M. Thiophene-NPN ligand supported rare-earth metal bis(alkyl) complexes. Synthesis and catalysis toward highly trans-1,4 selective polymerization of butadiene. Organometallics 2008, 27, 6531-6538.  doi: 10.1021/om800660j

    13. [13]

      Pan, W.; Chen, H.; Sun, R.; Gong, D.; Jia, X.; Hu, Y.; Zhang, X. Highly 1,2 regio- and stereoselective polymerization of 1,3-butadiene initiated by iron catalysts with pyridinyl phosphate. Ind. Eng. Chem. Res. 2016, 55, 7580-7586.  doi: 10.1021/acs.iecr.6b01274

    14. [14]

      Cariou, R.; Chirinos, J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Elsegood, M. R. J. 1,3-butadiene polymerization by bis(benzimidazolyl)amine metal complexes: remarkable microstructural control and a protocol for in-reactor blending of trans-1,4-, cis-1,4-, and cis-1,4-co-1,2-vinylpolybutadiene. Macromolecules 2009, 42, 1443-1444.  doi: 10.1021/ma802633q

    15. [15]

      Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3-dienes. ACS Macro Lett. 2016, 5, 777-780.  doi: 10.1021/acsmacrolett.6b00321

    16. [16]

      Pan, L.; Zhang, K.; Nishiura, M.; Hou, Z. M. Chain-shuttling polymerization at two different scandium sites: Regio- and stereospecific " one-pot” block copolymerization of styrene, isoprene, and butadiene. Angew. Chem. Int. Ed. 2011, 50, 12012-12015.  doi: 10.1002/anie.v50.50

    17. [17]

      Roitershtein, D. M.; Vinogradov, A. A.; Vinogradov, A. A.; Lyssenko, K. A.; Nelyubina, Y. V.; Anan'ev, I. V.; Nifant'ev, I. E.; Yakovlev, V. A.; Kostitsyna, N. N. Di- and triphenylacetates of lanthanum and neodymium. synthesis, structural diversity, and application in diene polymerization. Organometallics 2013, 32, 1272-1286.  doi: 10.1021/om301020r

    18. [18]

      Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3-dienes with neodymium-based catalysts. Macromolecules 2017, 50, 8464-8468.  doi: 10.1021/acs.macromol.7b02007

    19. [19]

      Martinez-Arripe, E.; Jean-Baptiste-dit-Dominique, F.; Auffrant, A.; Le Goff, X. F.; Thuilliez, J.; Nief, F. Synthesis and characterization of bidentate rare-earth iminophosphorane o-aryl complexes and their behavior as catalysts for the polymerization of 1,3-butadiene. Organometallics 2012, 31, 4854-4861.  doi: 10.1021/om300389v

    20. [20]

      Deacon, G. B.; Harika, R.; Junk, P. C.; Skelton, B. W.; White, A. H. Structural versatility in hydrated rare earth(III) 1,2-benzenedisulfonates. New J. Chem. 2007, 31, 634-645.  doi: 10.1039/b614681c

    21. [21]

      Chen, X. L.; Lei, P.; Qiao, Q. L. Synthesis and characterization of some hydrous TPPTS·Ln complexes (Ln = Sc, Y, La, Nd, Sm, Gd, Ho; and TPPTS = TRIS (m-sulfonatophenyl) phosphine). Polyhedron 1998, 17, 1381-1385.  doi: 10.1016/S0277-5387(97)00280-5

    22. [22]

      Kawada, A.; Yasuda, K.; Abe, H.; Harayama, T. Rare earth metal trifluoromethanesulfonates catalyzed benzyl-etherification. Chem. Pharm. Bull. 2002, 50, 380-383.  doi: 10.1248/cpb.50.380

    23. [23]

      WeÏwer, M.; Coulombel, L.; Duñach, E. Regioselective indium(III) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun. 2006, 3, 332-334.  doi: 10.1039/b513946e

    24. [24]

      Parac-Vogt, T. N.; Binnemans, K. Lanthanide(III) nosylates as new nitration catalysts. Tetrahedron. Letters 2004, 45, 3137-3139.  doi: 10.1016/j.tetlet.2004.02.084

    25. [25]

      Zhu, W. P.; Tong, X. W.; Shen, Z. Q. Ring-opening Polymerization of ε-Caprolactone Catalyzed by Rare Earth Trifluoromethanesulfonate [Ln(OTf)3] Catalysts. Chem. J. Chinese. U. 2007, 28, 1186-1188.

    26. [26]

      Ren, C. Y.; Li, G. L.; Dong, W. M.; Jiang, L. S.; Zhang, X. Q.; Wang, F. S. Soluble neodymium chloride 2-ethylhexanol complex as a highly active catalyst for controlled isoprene polymerization. Polymer 2007, 48, 2470-2474.  doi: 10.1016/j.polymer.2007.02.027

    27. [27]

      Kaita, S.; Doi, Y.; Kaneko, K.; Horiuchi, A. C.; Wakatsuki, Y. An efficient gadolinium metallocene-based catalyst for the synthesis of isoprene rubber with perfect 1,4-cis microstructure and marked reactivity difference between lanthanide metallocenes toward dienes as probed by butadiene-isoprene copolymerization catalysis. Macromolecules 2004, 37, 5860-5862.  doi: 10.1021/ma0490350

    28. [28]

      Dai, Q.; Zhang, X.; Hu, Y.; He, J.; Shi, C.; Li, Y.; Bai, C. Regulation of the cis-1,4- and trans-1,4-polybutadiene multiblock copolymers via chain shuttling polymerization using a ternary neodymium organic sulfonate catalyst. Macromolecules 2017, 50, 7887-7894.  doi: 10.1021/acs.macromol.7b01049

    29. [29]

      Harrowfield, J. M.; Kepert, D. L.; Patrick, J. M.; White, A. H. Structure and stereochemistry in 'f-block' complexes of high coordination number. VIII. The [M(unidentate)9] system. Crystal structures of [M(OH2)9] [CF3SO3]3, M = La, Gd, Lu, Y. Aust. J. Chem. 1983, 36, 483-492.  doi: 10.1071/CH9830483

    30. [30]

      Wen, J.; Zhang, X.; Dai, Q. Synthesis of polybutadienes with controllable microstructure by a novel binary Nd(3-NBSO3)3/alkylaluminum catalyst system. Chinese. J. Polym. Sci. 2015, 33, 475-480.  doi: 10.1007/s10118-015-1600-8

    31. [31]

      Friebe, L.; Windisch, H.; Nuyken, O.; Obrecht, W. Polymerization of 1,3-butadiene initiated by neodymium versatate/triisobutylaluminum/ethylaluminum sesquichloride: impact of the alkylaluminum cocatalyst component. J. Macromol. Sci. Pure. Appl. Chem. 2004, 41, 245-256.  doi: 10.1081/MA-120028204

    32. [32]

      Quirk, R. P.; Kells, A. M.; Yunlu, K.; Cuif, J. P. Butadiene polymerization using neodymium versatate-based catalysts: catalyst optimization and effects of water and excess versatic acid. Polymer 2000, 41, 5903-5908.  doi: 10.1016/S0032-3861(99)00775-2

    33. [33]

      Carbonaro, A.; Ferraro, D.; Bruzzone, M., 1988, U.S. Pat., 4,736,001.

    34. [34]

      Oehme, A.; Gebauer, U.; Gehrke, K.; Lechner, M. D. The influence of ageing and polymerization conditions on the polymerization of butadiene using a neodymium catalyst system. Angew. Makromol. Chem. 1996, 235, 121-130.  doi: 10.1002/apmc.1996.052350111

    35. [35]

      Hsieh, H. L.; Yeh, G. H. C. Mechanism of rare-earth catalysis in coordination polymerization. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 456-463.  doi: 10.1021/i300023a016

    36. [36]

      Annunziata, L.; Pragliola, S.; Pappalardo, D.; Tedesco, C.; Pellecchia, C. New (anilidomethyl)pyridine titanium(iv) and zirconium(iv) catalyst precursors for the highly chemo- and stereoselective cis-1,4-polymerization of 1,3-butadiene. Macromolecules 2011, 44, 1934-1941.  doi: 10.1021/ma1028455

    37. [37]

      Liu, B.; Wang, X.; Pan, Y.; Lin, F.; Wu, C.; Qu, J.; Luo, Y.; Cui, D. Unprecedented 3,4-isoprene and cis-1,4-butadiene copolymers with controlled sequence distribution by single yttrium cationic species. Macromolecules 2014, 47, 8524-8530.  doi: 10.1021/ma5019654

    38. [38]

      Appukuttan, V.; Zhang, L.; Ha, C-S.; Kim, I. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer 2009, 50, 1150-1158.  doi: 10.1016/j.polymer.2008.12.047

    39. [39]

      Gong, D.; Wang, B.; Bai, C.; Bi, J.; Wang, F.; Dong, W.; Zhang, X.; Jiang, L. Metal dependent control of cis-/trans-1,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine. Polymer 2009, 50, 6259-6264.  doi: 10.1016/j.polymer.2009.10.054

    40. [40]

      Liu, J.; Fan, X.; Min, X.; Zhu, X.; Zhao, N.; Wang, Z. Synthesis of high cis-1,4 polybutadiene with narrow molecular weight distribution via a neodymium-based binary catalyst. RSC Adv. 2018, 8, 21926-21932.  doi: 10.1039/C8RA02656D

    41. [41]

      Iovu, H.; Hubca, G.; Simionescu, E.; Badea, E.; Hurst, J. S. Butadiene polymerisation using binary neodymium-based catalyst systems. The effect of catalyst preparation. Eur. Polym. J. 1997, 33, 811-814.  doi: 10.1016/S0014-3057(96)00289-3

    42. [42]

      Iovu, H.; Hubca, G.; Racoti, D.; Hurst, J. S. Modelling of the butadiene and isoprene polymerization processes with a binary neodymium-based catalyst. Eur. Polym. J. 1999, 35, 335-344.  doi: 10.1016/S0014-3057(98)00126-8

    43. [43]

      Kwag, G. A highly reactive and monomeric neodymium catalyst. Macromolecules 2002, 35, 4875-4879.  doi: 10.1021/ma012123p

    44. [44]

      Furukawa, J. Mechanism of diene polymerization. Pure Appl. Chem. 1975, 42, 495-508.  doi: 10.1351/pac197542040495

    45. [45]

      Loughmari, S.; Hafid, A.; Bouazza, A.; Bouadili, A. E.; Zinck, P.; Visseaux, M. Highly stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst: Access to bio-sourced elastomers. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 2898-2905.  doi: 10.1002/pola.26069

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    3. [3]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    4. [4]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    5. [5]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    6. [6]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    7. [7]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    8. [8]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    9. [9]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    10. [10]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    11. [11]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    17. [17]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    18. [18]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    19. [19]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    20. [20]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

Metrics
  • PDF Downloads(0)
  • Abstract views(817)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return