Citation: Jin-Zhe Lyu, Roman Laptev, Natalya Dubrova. Positron Spectroscopy of Free Volume in Poly(vinylidene fluoride) after Helium Ions Irradiation[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 527-534. doi: 10.1007/s10118-019-2195-2 shu

Positron Spectroscopy of Free Volume in Poly(vinylidene fluoride) after Helium Ions Irradiation

  • Corresponding author: Jin-Zhe Lyu, 2891796456@qq.com
  • Received Date: 4 September 2018
    Revised Date: 24 October 2018
    Accepted Date: 1 January 2018
    Available Online: 5 December 2018

  • Free volume is an extremely important intrinsic defect in polymers. Structurally, free volume is the randomly distributed holes in the polymer molecular chain segments. In proton exchange membrane fuel cells, free volume is also the space needed for the directional conduction of protons. Irradiation by α particles to grafting sulfonated poly(vinylidene fluoride) (PVDF) is one of the methods to produce proton exchange membrane with good proton channel rate. Positron annihilation lifetime spectroscopy was used to study the free volume size at different absorbed dose levels from 0.13 MGy to 0.65 MGy. Measurement method of positron annihilation lifetime spectroscopy for PVDF based on 44Ti positron source was developed. For low dose irradiation at 0.26 MGy, a decrease in free volume and practically unchanged crystallinity were observed. Further increase of absorbed dose range from 0.26 MGy to 0.39 MGy led to an increasing crystallinity with the same free volume level. For the absorbed dose from 0.39 MGy to 0.65 MGy, crystallinity was decreased but free volume remained almost constant.
  • 加载中
    1. [1]

      Wu, B.; Wang, C. L.; Liu, Y. Y.; Wang, S. J.; Qi, Z. N. Positron Annihilation Study on the γ-radiation effect of high impact polystyrene. Wuhan University Journal 1995, 41, 329‒332.

    2. [2]

      Jiang, Z. Y.; Yu, W. Z.; Zhao, Y. F.; Jiang, X. Q.; Xia, Y. F. Influence of irradiation dose on free volume and microstructure of SB biblock copolymer study by PALS and FT-IR. J. Acta Physica Sinica 2006, 55, 3743‒3747.

    3. [3]

      Wang, B.; Wang, S. J. Advances in the study of polymers by positron spectroscopy. J. Physics 2000, 29, 196-201.

    4. [4]

      Huang, W.; Han, J.; Xu, Y. S.; Fu, Y. B.; He, J. Study on radiation effect of polytetrofluoroethylene sealing material irradiated by electron beam. Nuclear Physics Review 2006, 23, 180‒184.  doi: 10.1080/00379810601088052

    5. [5]

      Sun, X. D.; Zeng, M. F.; Bao, G. Q.; Zheng, H. T.; Liu, W. M; Qi, C. Z. Application of positron annihilation technique for thin polymer membranes. J. Membrane Science & Technology 2006, 26, 77-80.  doi: 10.1007/s11434-006-2076-2

    6. [6]

      Wang, B.; Li, S.; Wang, C. Applications of positron annihilation technique in studying of polymer material science. J. Nuclear Physics Review 1993, 10, 34-38.

    7. [7]

      Liao, X.; Zhang, Q. W.; He, T.; An, Z.; Yang, Q.; Li, G. X. Recent advances in application of positron annihilation lifetime spectroscopy for polymer microstructure analysis. J. Polymer Materials Science and Engineering 2014, 30, 198-204.

    8. [8]

      Deng, Q.; Zhang, K. Z.; Wang, X. J. Positron annihilation lifetime used in polymer. J. Thermosetting Resin 2005, 20, 42-46.

    9. [9]

      Keriem, M. S. A. E. Effect of low gamma-irradiated dose on the structure of cellulose triacetate films: ii. positron annihilation spectroscopy. American Journal of Polymer Science 2015, 5, 35-40.  doi: 10.5923/j.ajps.20150502.01

    10. [10]

      Kamal, H.; Sabry, G. M.; Lotfy, S.; Abdallah, N. M.; Ulanski, P.; Rosiak, J.; Hegazy, E. A. Controlling of degradation effects in radiation processing of starch. Journal of Macromolecular Science: Part A - Chemistry 2007, 44, 865-875.  doi: 10.1080/10601320701407961

    11. [11]

      Ito, Y.; Kobayashi, Y. Proceedings of the 6th International Workshop on Positron and Positronium Chemistry (PPC-6) - 7-11 June 1999 Tsukuba, Japan - Preface. J. Radiation Physics & Chemistry 2000, 58, 401.  doi: 10.1016/S0969-806X(00)00192-4

    12. [12]

      Zhou, X. Y.; Zhai, L. H.; Du, J. F.; Han, R. D. Free volume changes in γ-irradiated polyethylene and polytetraflourethylene. J. Mater. Sci. Technol. 2000, 16, 302-304.  doi: 10.3321/j.issn:1005-0302.2000.03.009

    13. [13]

      Jassim, K. S.; Abdullah, A. A.; Al-Bayati, A. A. Free volume properties of beta-irradiated high-density polyethylene (HDPE) studied by positron method. American Journal of Scientific Research. 2012, 52, 33-41.

    14. [14]

      Wang, S. J.; Chen, Z. Q.; Wang, B., in Applied positron spectroscopy (in Chinese), Hubei Science and Technology Press, Wuhan, 2008, p.25

    15. [15]

      Zhang, J. H.; Guo, G. B.; An, S. L.; Hao, Y.; Zhang, D.; Yan, K. B. Synthesis and properties of proton exchange membranes via single-step grafting PSBMA onto PVDF modified by TMAH. Acta Physico-Chimca Sinica 2015, 31, 1905-1913.  doi: 10.3866/PKU.WHXB201508261

    16. [16]

      Dyussembekova, A.; Sokhoreva, V. Polymer membranes for hydrogen fuel cells. Key Engineering Materials. 2017, 743, 297-302.  doi: 10.4028/www.scientific.net/KEM.743.297

    17. [17]

      Sokhoreva, V.; Dubrova, N. A.; Dyussembekova, A. A. Radiation-chemical modification of PVDF films as a method of creating proton-conducting membranes. Key Engineering Materials. 2016, 683, 193-198.  doi: 10.4028/www.scientific.net/KEM.683.193

    18. [18]

      Hayre, R. O.; Cha, S. W.; Colella, W. G.; Prinz, F. B., in Fuel Cell Fundamentals, 3rd ed. (in Chinese), Publishing House of Electronics Industry, Beijing, 2007, p.19–143

    19. [19]

      Colleen, S., in РЕМ Fuel Cell Modeling and Simulation Using MATLAB (in Chinese), Publishing House of Electronics Industry, Beijing, 2013, p.12–94

    20. [20]

      Yi, B. L., in Fuel Cell - Principles, Technology, Apply (in Chinese), Chemical Industry Press, Beijing, 2003, p. 9–13

    21. [21]

      Dryzek, J.; Siemek, K. The detection of reverse accumulation effect in the positron annihilation profile of stack of aluminum and silver foils. J. Nukleonika. 2015, 60, 713-716.  doi: 10.1515/nuka-2015-0127

    22. [22]

      Siemek, K.; Dryzek, J. The computer code for calculations of the positron distribution in a layered stack systems. J. Acta Physica Polonica Series A 2014, 125, 833-836.  doi: 10.12693/APhysPolA.125.833

    23. [23]

      Dryzek, J.; Singleton, D. Implantation profile and linear absorption coefficients for positrons injected in solids from radioactive sources 22Na, and 68Gen\68Ga. J. Nuclear Instruments and Methods in Physics Research B 2006, 252, 197-204.  doi: 10.1016/j.nimb.2006.08.017

    24. [24]

      Dryzek, J.; Dryzek, E. Measurement of backscattering coefficient of positron using the characteristic X-rays. J. Physics Letters A 2003, 320, 238-241.  doi: 10.1016/j.physleta.2003.11.012

    25. [25]

      Bespalov, V. I., in Interaction of ionizing radiation with substance, 5nd ed. (in Russian), Publishing house of Tomsk Polytechnic University, Томск, 2014, p. 151-181

    26. [26]

      Solov’ev, E. M.; Spitsyn, B. V.; Laptev, R. S.; Lider, A. M.; Bordulev, Y. S.; Mikhailov, A. A. Analysis of the vacancy system of restructured zinc by the positron annihilation method. J. Technical Physics 2018, 63, 834-837.  doi: 10.1134/S106378421806021X

    27. [27]

      Bordulev, Y. S.; Lee, K.; Laptev, R. S.; Kudiiarov, N. V.; Lider, A. M. Positron spectroscopy of defects in hydrogen-saturated Zirconium. J. Defect & Diffusion Forum. 2017, 373, 138-141.  doi: 10.4028/www.scientific.net/DDF.373.138

    28. [28]

      Kirkegaard, P.; Pedersen, N. J.; Eldrup, M., in PATFIT-88: A Data-Processing System for positron Annihilation Spectra on Mainfraime and personal Computers, RisФ Nalional Laboratory, Demark, 1989, p. 7–21

    29. [29]

      Kansy, J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instr. and Meth. in Phys. Res. A 1996, 374, 235-244.  doi: 10.1016/0168-9002(96)00075-7

    30. [30]

      Yu, W. Z.; Sun, J. Z. The positron annihilation lifetime spectrum calculated using the CONTIN (PALS2) program (in Chinese). Nuclear Technology 2000, 23, 411-417.  doi: 10.3321/j.issn:0253-3219.2000.06.014

    31. [31]

      Dlubek, G.; Eichler, S. Do MELT or CONTIN programs accurately reveal the o-Ps lifetime distribution in polymers? Analysis of simulated lifetime spectra. J. Physica Status Solidi 1998, 168, 333-350.  doi: 10.1002/(SICI)1521-396X(199808)168:2<333::AID-PSSA333>3.0.CO;2-V

    32. [32]

      Shukla, A.; Peter, M.; Hoffmann, L. Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nuclear Instrument &. Methods A 1993, 335, 310-317.  doi: 10.1016/0168-9002(93)90286-Q

    33. [33]

      Jean, Y. C. Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. Microchemical J. 1990, 42, 72-102.  doi: 10.1016/0026-265X(90)90027-3

    34. [34]

      Wang, G. H., in Physics of Particle Interaction with Solids (in Chinese), Science Press, Beijing, 1991, p.1055–1057

    35. [35]

      Wang, S. J.; Chen, Z. Q.; Wang, B., in Applied positron spectroscopy (in Chinese), Hubei Science and Technology Press, Wuhan, 2008, p.174-176

    36. [36]

      Ivanchev, S. S., in Radical polymerization (in Russian), Chemistry Publishing House, Moscow, 1985, p.35–59

  • 加载中
    1. [1]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    2. [2]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    3. [3]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    4. [4]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    5. [5]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    6. [6]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    7. [7]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    8. [8]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    9. [9]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    10. [10]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    11. [11]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    12. [12]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    13. [13]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    14. [14]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    15. [15]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    16. [16]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    17. [17]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    18. [18]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    19. [19]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    20. [20]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

Metrics
  • PDF Downloads(0)
  • Abstract views(706)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return