Citation: Li Dong, Xiang-Dong Liu, Zheng-Rong Xiong, De-Kun Sheng, Yan Zhou, Yu-Ming Yang. Preparation and Characterization of UV-absorbing PVDF Membranes via Pre-irradiation Induced Graft Polymerization[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 493-499. doi: 10.1007/s10118-019-2194-3 shu

Preparation and Characterization of UV-absorbing PVDF Membranes via Pre-irradiation Induced Graft Polymerization

  • Corresponding author: De-Kun Sheng, dksheng@ciac.ac.cn Yu-Ming Yang, ymyang@ciac.ac.cn
  • Received Date: 31 August 2018
    Revised Date: 6 October 2018
    Accepted Date: 19 October 2018
    Available Online: 14 November 2018

  • Herein, excellent UV-absorbing poly(vinylidene fluoride) (PVDF) membranes were fabricated through the pre-irradiation induced graft polymerization method. The PVDF chains irradiated with 60Co γ-ray were modified with the polymerizable UV absorber 2-[2-hydroxy-5-[2-(methacryloyloxy)ethyl]phenyl]-2H-benzotriazole (RUVA-93). The influences of irradiation dose and monomer concentration on the prepared PVDF-g-PRUVA-93 membranes were investigated, and the optimal condition was eventually obtained. The chemical structures of the films were studied by 1H-NMR, FTIR, and XRD. UV light transmittance and DSC tests were used to characterize the UV-absorbing performance and thermal property of the PVDF films before and after modification. The results proved that the PRUVA-93 side chains were successfully incorporated into the PVDF main chains and the obtained PVDF-g-PRUVA-93 films possessed remarkable UV-absorbing property. The modified membrane made under the optimized experiment condition could completely block the UV light in the range of 200−387 nm. Additionally, the transmittance of the PVDF-g-PRUVA-93 film could be reduced to 0.04% in 280−320 nm, where the light irradiation could damage polymer materials most seriously.
  • 加载中
    1. [1]

      Kang, G. D.; Cao, Y. M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review. J. Membr. Sci. 2014, 463, 145-165.  doi: 10.1016/j.memsci.2014.03.055

    2. [2]

      Otitoju, T. A.; Ahmad, A. L.; Ooi, B. S. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review. J. Water. Process. Eng. 2016, 14, 41-59.  doi: 10.1016/j.jwpe.2016.10.011

    3. [3]

      Rahimpour, A.; Madaeni, S, S.; Zereshki, S.; Mansourpanah, Y. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl. Surf. Sci. 2009, 255, 7455-7461.  doi: 10.1016/j.apsusc.2009.04.021

    4. [4]

      Zuo, J. H.; Cheng, P.; Chen, X. F.; Yan, X.; Guo, Y. J.; Lang, W. Z. Ultrahigh flux of polydopamine-coated PVDF membranes quenched in air via thermally induced phase separation for oil/water emulsion separation. Sep. Purif. Technol. 2018, 192, 348-359.  doi: 10.1016/j.seppur.2017.10.027

    5. [5]

      Wu, X. N.; Zhao, B.; Wang, L.; Zhang, Z. H.; Zhang, H. W.; Zhao, X. H.; Guo, X. F. Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor. J. Membr. Sci. 2016, 520, 120-129.  doi: 10.1016/j.memsci.2016.07.025

    6. [6]

      Ji, J.; Liu, F.; Awanis Hashim, N.; Moghareh Abed, M. R.; Li, K. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. Reac. Funct. Polym. 2015, 86,134-153.  doi: 10.1016/j.reactfunctpolym.2014.09.023

    7. [7]

      Zhao, C. Q.; Xu, X. C.; Chen, J.; Yang, F. L. Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2013, 1, 349-354.  doi: 10.1016/j.jece.2013.05.014

    8. [8]

      Chen, L. F.; Hou, Z. C.; Lu, X. F.; Chen, P.; Liu, Z. Y.; Shen, L. G.; Bian, X. K. Qin, Q. Antifouling microfiltration membranes prepared from poly(vinylidenefluoride)-graft-poly(N-vinyl pyrrolidone) powders synthesized via pre-irradiation induced graft polymerization. J. Appl. Polym. Sci. 2013, 128, 3949-3956.  doi: 10.1002/app.38625

    9. [9]

      Zhu, Z. Y.; Jiang, J. L.; Wang, X. D.; Huo, X. N.; Xu, Y. W.; Li, Q. Q.; Wang, L. Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles. Chem. Eng. J. 2017, 314, 266-276.  doi: 10.1016/j.cej.2016.12.038

    10. [10]

      Wu, C. R.; Tang, W. Y.; Zhang, J. H.; Liu, S. H.; Wang, Z. Y.; Wang, X.; Lu, X. L. Preparation of super-hydrophobic PVDF membrane for MD purpose via hydroxyl induced crystallization-phase inversion. J. Membr. Sci. 2017, 543, 288-300.  doi: 10.1016/j.memsci.2017.08.066

    11. [11]

      Yang, C.; Li, X. M.; Gilron, J.; Kong, D. F.; Yin, Y.; Oren, Y.; Linder, C.; He, T.; CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J. Membr. Sci. 2014, 456, 155-161.  doi: 10.1016/j.memsci.2014.01.013

    12. [12]

      Chen, X.; He, Y.; Shi, C. C.; Fu, W. G.; Bi, S. Y.; Wang, Z. Y.; Chen, L. Temperature-and pH-responsive membranes based on poly (vinylidene fluoride) functionalized with microgels. J. Membr. Sci. 2014, 469, 447-457.  doi: 10.1016/j.memsci.2014.07.005

    13. [13]

      Sun, C. G.; Feng, X. S. Enhancing the performance of PVDF membranes by hydrophilic surface modification via amine treatment. Sep. Purif. Technol. 2017, 185, 94-102.  doi: 10.1016/j.seppur.2017.05.022

    14. [14]

      Cai, T.; Neoh, K. G.; Kang, E. T. Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) graft copolymer membranes via click chemistry and atom transfer radical polymerization. Langmuir 2011, 27, 2936-2945.  doi: 10.1021/la2001514

    15. [15]

      Xu, L. Q.; Chen, J. C.; Wang, R.; Neoh, K. G.; Kang, E. T.; Fu, G. D. A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. RSC Adv. 2013, 3, 25204-25214.  doi: 10.1039/c3ra42782j

    16. [16]

      Xu, C. Q.; Huang, W.; Zhou, Y. F.; Yan, D. Y.; Chen, S. T.; Huang, H. Graft copolymerization of N-vinyl-2-pyrrolidone onto pre-irradiated poly(vinylidene fluoride) powder. Radiat. Phys. Chem. 2012, 81, 426-431.  doi: 10.1016/j.radphyschem.2011.12.017

    17. [17]

      Zhao, X. Z.; Xuan, H. X.; Qin, A. W.; Liu, D. P.; He, C. J. Improved antifouling property of PVDF ultrafiltration membrane with plasma treated PVDF powder. RSC Adv. 2015, 5, 64526-64533.  doi: 10.1039/C5RA08705H

    18. [18]

      Liu, J.; Shen, X.; Zhao, Y. P.; Chen, L. Acryloylmorpholine-grafted PVDF membrane with improved protein fouling resistance. Ind. Eng. Chem. Res. 2013, 52, 18392-18400.  doi: 10.1021/ie403456n

    19. [19]

      Dong, L.; Liu, X. D.; Xiong, Z. R.; Sheng, D. K.; Zhou, Y.; Lin, C. H.; Yang, Y. M. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP. Appl. Surf. Sci. 2018, 435, 680-686.  doi: 10.1016/j.apsusc.2017.11.135

    20. [20]

      Dong, L.; Liu, X. D.; Xiong, Z. R.; Sheng, D. K.; Lin, C. H.; Zhou, Y.; Yang, Y. M. Fabrication of highly efficient ultraviolet absorbing PVDF membranes via surface polydopamine deposition. J. Appl. Polym. Sci. 2018, 135, 45746.  doi: 10.1002/app.45746

    21. [21]

      Wang, G. R.; Xu, S. M.; Xia, C. H.; Yan, D. P.; Lin, Y. J.; Wei, M. Fabrication of host-guest UV-blocking materials by intercalation of fluorescent anions into layered double hydroxides. RSC Adv. 2015, 5, 23708-23714.  doi: 10.1039/C5RA00589B

    22. [22]

      Cohen, S.; Haham, H.; Pellach, M.; Margel, S. Design of UV-absorbing polypropylene films with polymeric benzotriaziole based nano-and microparticle coatings. ACS Appl. Mater. Inter. 2016, 9, 868-875.  doi: 10.1021/acsami.6b12821

    23. [23]

      Hattori, H.; Ide, Y.; Sano, T. Microporous titanate nanofibers for highly efficient UV-protective transparent coating. J. Mater. Chem. A 2014, 2, 16381-16388.  doi: 10.1039/C4TA02975E

    24. [24]

      Kainulainen, T. P.; Sirviö, J. A.; Sethi, J.; Hukka, T. I.; Heiskanen, J. P. UV-blocking synthetic biopolymer from biomass-based bifuran diester and ethylene glycol. Macromolecules 2018, 51, 1822-1829.  doi: 10.1021/acs.macromol.7b02457

    25. [25]

      Lizundia, E.; Ruiz-Rubio, L.; Vilas, J. L.; León, L. M. Poly(L-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications. J. Appl. Polym. Sci. 2016, 133, 42426.  doi: 10.1002/app.42426

    26. [26]

      Feng, Y.; Zhang, J. M.; He, J. S.; Zhang, J. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties. Carbohyd. Polym. 2016, 147, 171-177.  doi: 10.1016/j.carbpol.2016.04.003

    27. [27]

      Ge, F. J.; Ding, Y. Y.; Yang, L.; Huang, Y.; Jiang, L.; Dan, Y. Effect of the content and distribution of ultraviolet absorbing groups on the UV protection and degradation of polylactide films. RSC Adv. 2015, 5, 70473-70481.  doi: 10.1039/C5RA13285A

    28. [28]

      Du, J. Z.; Sun, H. Polymer/TiO2 hybrid vesicles for excellent UV screening and effective encapsulation of antioxidant agents. ACS Appl. Mater. Interfaces 2014, 6, 13535-13541.  doi: 10.1021/am502663j

    29. [29]

      Senatova, S. I.; Senatov, F. S.; Kuznetsov, D. V.; Stepashkin, A. A. Issi, J. P. Effect of UV-radiation on structure and properties of PP nanocomposites. J. Alloy. Compd. 2017, 707, 304-309.  doi: 10.1016/j.jallcom.2016.11.170

    30. [30]

      Woo, H.; Char, K. Transparent organosilicate hybrid films with thermally insulating and UV-blocking properties based on silica/titania hybrid hollow colloidal shells. Macromol. Res. 2013, 21, 1004-1010.  doi: 10.1007/s13233-013-1125-3

    31. [31]

      Aguirre, M.; Paulis, M.; Leiza, J. R. UV screening clear coats based on encapsulated CeO2 hybrid latexes. J. Mater. Chem. A 2013, 1, 3155-3162.  doi: 10.1039/c2ta00762b

    32. [32]

      Zhao, Y.; Xu, Z. G.; Wang, X. G.; Lin, T. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl. Surf. Sci. 2013, 286, 364-370.  doi: 10.1016/j.apsusc.2013.09.092

    33. [33]

      Zhang, Y.; Han, J. R.; Wu, S. Y.; Qi, Z. G.; Xu, J.; Guo, B. H. Synthesis, physical properties and photodegradation of functional poly (butylene succinate) covalently linking UV stabilizing moieties in molecular chains. Colloid. Surf. A 2017, 524, 160-168.  doi: 10.1016/j.colsurfa.2017.04.025

    34. [34]

      Lei, H. B.; He, D. L.; Guo, Y. N.; Tang, Y. N.; Huang, H. Q. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer. Appl. Surf. Sci. 2018, 442, 71-77.  doi: 10.1016/j.apsusc.2018.02.134

    35. [35]

      Dong, L.; Liu, X. D.; Xiong, Z. R.; Sheng, D. K.; Lin, C. H.; Zhou, Y.; Yang, Y. M. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property. Appl. Surf. Sci. 2018, 444, 497-504.  doi: 10.1016/j.apsusc.2018.03.067

    36. [36]

      Wang, Y.; Su, J.; Li, T.; Ma, P. M.; Bai, H. Y.; Xie, Y.; Chen, M. Q.; Dong, W. F. A novel UV-shielding and transparent polymer film: When bioinspired dopamine-melanin hollow nanoparticles join polymers. ACS Appl. Mater. Inter. 2017, 9, 36281-36289.  doi: 10.1021/acsami.7b08763

    37. [37]

      de Moraes, A. C. M.; Andrade, P. F.; de Faria, A. F.; Simões, M. B.; Salomão, F. C. C. S.; Barros, E. B.; Goncalves, M. C.; Alves, O. L. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate. Carbohyd. Polym. 2015, 123, 217-227.  doi: 10.1016/j.carbpol.2015.01.034

    38. [38]

      Wang, X. L.; Zhou, S. X.; Wu, L. M. Fabrication of Fe3+ doped Mg/Al layered double hydroxides and their application in UV light-shielding coatings. J. Mater. Chem. C 2014, 2, 5752-5758.  doi: 10.1039/c4tc00437j

    39. [39]

      Hess, S. C.; Permatasari, F. A.; Fukazawa, H.; Schneider, E. M.; Balgis, R.; Ogi, T.; Okuyama, K.; Stark, W. J. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. J. Mater. Chem. A 2017, 5, 5187-5194.  doi: 10.1039/C7TA00397H

    40. [40]

      Wang, Y.; Li, T.; Ma, P. M.; Bai, H. Y.; Xie, Y.; Chen, M. Q.; Dong, W. F. Simultaneous enhancements of UV-shielding properties and photostability of poly (vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustain. Chem. Eng. 2016, 4, 2252-2258.  doi: 10.1021/acssuschemeng.5b01734

    41. [41]

      Fernandes, S. C. M.; Alonso-Varona, A.; Palomares, T.; Zubillaga, V.; Labidi, J.; Bulone, V. Exploiting mycosporines as natural molecular sunscreens for the fabrication of UV-absorbing green materials. ACS Appl. Mater. Inter. 2015, 7, 16558-16564.  doi: 10.1021/acsami.5b04064

    42. [42]

      Rastogi, R. P.; Incharoensakdi, A. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556. Photochem. Photobiol. Sci. 2014, 13, 1016-1024.  doi: 10.1039/c4pp00013g

    43. [43]

      Nguyen, K. H.; Chollet-Krugler, M.; Gouault, N.; Tomasi, S. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 2013, 30, 1490-1508.  doi: 10.1039/c3np70064j

    44. [44]

      Cohen, S.; Kolitz-Domb, M.; Haham, H.; Gelber, C.; Margel, S. Engineering of UV-absorbing polypropylene films containing poly(2-(2’-hydroxy-5’-methacryloxyethylphenyl)-2H-benzotriazole) nanoparticles. Polym. Adv. Technol. 2017, 28, 897-904.  doi: 10.1002/pat.v28.7

    45. [45]

      Qin, Q.; Hou, Z. C.; Lu, X. F.; Bian, X. K.; Chen, L. F.; Shen, L. G.; Wang, S. Microfiltration membranes prepared from poly(N-vinyl-2-pyrrolidone) grafted poly(vinylidene fluoride) synthesized by simultaneous irradiation. J. Membr. Sci. 2013, 427, 303-310.  doi: 10.1016/j.memsci.2012.09.059

    46. [46]

      Shin, I. H.; Hong, S.; Lim, S. J.; Son, Y. S.; Kim, T. H. Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor. J. Ind. Eng. Chem. 2017, 46,103-110.  doi: 10.1016/j.jiec.2016.10.020

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    5. [5]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    6. [6]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    7. [7]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    8. [8]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    9. [9]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    10. [10]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    11. [11]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    12. [12]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    13. [13]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    14. [14]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    15. [15]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    16. [16]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    17. [17]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    18. [18]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    19. [19]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    20. [20]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

Metrics
  • PDF Downloads(0)
  • Abstract views(771)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return