Citation: Shu-Wei Liu, Lu Wang, Min Lin, Yi Liu, Le-Ning Zhang, Hao Zhang. Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 115-128. doi: 10.1007/s10118-019-2193-4 shu

Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites

  • Corresponding author: Le-Ning Zhang, 951446482@qq.com Hao Zhang, hao_zhang@jlu.edu.cn
  • Received Date: 10 September 2018
    Revised Date: 1 January 2018
    Accepted Date: 11 October 2018
    Available Online: 5 December 2018

  • The past decade has witnessed the booming developments of the new methodologies for noninvasive tumor treatment, which are considered to overcome the current limitation of low treating efficacy, high risk of tumor recurrence, and severe side effects. Among a variety of novel therapeutic methods, photothermal therapy, employing nanometer-sized agents as the heat generators under near-infrared (NIR) light irradiation to ablate tumors, gives new insights into noninvasive tumor treatments with minimal side effects. Although many nanomaterials possess photothermal effects, inorganic nanoparticles and polymers are the most competitive alternatives considering the high photothermal performance and good biocompatibility. In this review, we summarized the tumor photothermal therapy using the nanocomposites composed of inorganic nanoparticles and polymers. Extinction coefficient and photothermal transduction efficiency are the two main factors to evaluate the photothermal performance of nanocomposites in vitro. Considering the improvement in the stability, biocompatibility, blood circulation half-life, and tumor uptake rate after polymer coating, these nanocomposites should be designed with inorganic core and polymer shell, thus improving the tumor treating efficacy in vivo. Such structure fulfills the requirements of high photothermal performance and good bio-security, making it possible to achieve complete ablation for shallow and small tumors under the safe limitation of NIR laser power density.
  • 加载中
    1. [1]

      Gong, P.; Liang, S.; Carlton, E. J.; Jiang, Q.; Wu, J.; Wang, L.; Remals, J. V. Urbanisation and health in China. Lancet 2012, 379(9818), 843-852.  doi: 10.1016/S0140-6736(11)61878-3

    2. [2]

      Chen, W.; Zheng, R.; Zhang, S.; Zeng, H.; Xia, C.; Zuo, T.; Yang, Z.; Zou, X.; He, J. Cancer incidence and mortality in China. 2013. Cancer Lett. 2017, 401, 63-71.  doi: 10.1016/j.canlet.2017.04.024

    3. [3]

      Choueiri, T. K.; Motzer, R. J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 2017, 376(4), 354-366.  doi: 10.1056/NEJMra1601333

    4. [4]

      Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2(12), 751-760.  doi: 10.1038/nnano.2007.387

    5. [5]

      Fang, R. H.; Kroll, A. V.; Gao, W.; Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30(23), 1706759.  doi: 10.1002/adma.v30.23

    6. [6]

      Wang, Z.; Liu, W.; Shi, J.; Chen, N.; Fan, C. Nanoscale delivery systems for cancer immunotherapy. Mater. Horiz. 2018, 5(3), 344-362.  doi: 10.1039/C7MH00991G

    7. [7]

      Vankayala, R.; Hwang, K. C. Near-infrared-light-activatable nanomaterials-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 2018, 30(23), 1706320.  doi: 10.1002/adma.v30.23

    8. [8]

      Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan J. Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 2017, 46(22), 6905-6926.  doi: 10.1039/C7CS00516D

    9. [9]

      Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today 2018, 19, 146-187.  doi: 10.1016/j.nantod.2018.02.010

    10. [10]

      Zhao, J.; Zhong, D.; Zhou, S. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6(3), 349-365.  doi: 10.1039/C7TB02573D

    11. [11]

      Liu, B.; Li, C.; Cheng, Z.; Hou, Z.; Huang, S.; Lin, J. Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 2016, 4(6), 890-909.  doi: 10.1039/C6BM00076B

    12. [12]

      Zhang, P.; Hu, C.; Ran, W.; Meng, J.; Yin, Q.; Li, Y. Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 2016, 6(7), 948-968.  doi: 10.7150/thno.15217

    13. [13]

      Kang, H.; Mintri, S.; Menon, A. V.; Lee, H. Y.; Choi, H. S. Kim, J. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale 2015, 7(45), 18848-18862.

    14. [14]

      Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47(7), 2280-2297.  doi: 10.1039/C7CS00522A

    15. [15]

      Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29(23), 1606134.  doi: 10.1002/adma.201606134

    16. [16]

      Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115(19), 10410-10488.  doi: 10.1021/acs.chemrev.5b00193

    17. [17]

      Spyratou, E.; Makropoulou, M.; Efstathopoulos, E. P.; Georgakilas, A. G.; Sihver, L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 2017, 9(12), 173.  doi: 10.3390/cancers9120173

    18. [18]

      Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater. 2018,1800662.  doi: 10.1002/adma.201800662

    19. [19]

      Wang, H.; Chen, Q.; Zhou, S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47(11), 4198-4232.  doi: 10.1039/C7CS00399D

    20. [20]

      Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11(1), 1-41.  doi: 10.1007/s12274-017-1616-1

    21. [21]

      Cai, Y.; Si, W.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Organic dye based nanoparticles for cancer phototheranostics. Small 2018, 14(25), 1704247.  doi: 10.1002/smll.v14.25

    22. [22]

      Wang, H.; Li, X.; Tse, B. W. C.; Yang, H.; Thorling, C. A.; Liu, Y.; Touraud, M.; Chouane, J. B.; Liu, X.; Roberts, M. S.; Liang, X. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018, 8(5), 1227-1242.  doi: 10.7150/thno.22872

    23. [23]

      Liang, X.; Li, Y.; Li, X.; Jing, L.; Deng, Z.; Yue, X.; Li, C.; Dai, Z. PEGylated polypyrrole nanoparticles conjugating gadolinium chelates for dual-modal MRI/photoacoustic imaging guided photothermal therapy of cancer. Adv. Funct. Mater. 2015, 25(9), 1451-1462.  doi: 10.1002/adfm.v25.9

    24. [24]

      Song, X.; Gong, H.; Yin, S.; Cheng, L.; Wang, C.; Li, Z.; Li, Y.; Wang, X.; Liu, G.; Liu, Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater. 2014, 24(9), 1194-1201.  doi: 10.1002/adfm.v24.9

    25. [25]

      Yang, Y.; Awb, J.; Xing, B. Nanostructures for NIR light-controlled therapies. Nanoscale 2017, 9(11), 3698-3718.  doi: 10.1039/C6NR09177F

    26. [26]

      Lin, M.; Wang, D. D., Liu, S. W., Zhou, D.; Zhang, H.; Liu, C.; Sun, H.-C. Construction of nanoparticle/polymer composite photothermal nanoplatforms and therapeutic applications. Acta Polymerica Sinica (in Chinese) 2015, 2, 133-146.

    27. [27]

      Lin, M.; Guo, C.; Li, J.; Zhou, D.; Liu, K.; Zhang, X.; Xu, T.; Zhang, H.; Wang, L.; Yang, B. Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS Appl. Mater. Interfaces 2014, 6(8), 5860-5868.  doi: 10.1021/am500715f

    28. [28]

      Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111(9), 3636-3641.  doi: 10.1021/jp064341w

    29. [29]

      Dykman, L. A.; Khlebtsov, N. G. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016, 108, 13-34.  doi: 10.1016/j.biomaterials.2016.08.040

    30. [30]

      Abadeer, N. S.; Murphy, C. J. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 2016, 120(9), 4691-4716.  doi: 10.1021/acs.jpcc.5b11232

    31. [31]

      Zhu, S.; Gong, L.; Xie, J.; Gu, Z.; Zhao, Y. Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 2017, 1(12), 1700220.  doi: 10.1002/smtd.v1.12

    32. [32]

      Li, X.; Shan, J.; Zhang, W.; Su, S.; Yuwen, L.; Wang, L. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 2017, 13(5), 1602660.  doi: 10.1002/smll.v13.5

    33. [33]

      Estelrich, J.; Busquets, M. A. Iron oxide nanoparticles in photothermal therapy. Molecules 2018, 23(7), 1567.  doi: 10.3390/molecules23071567

    34. [34]

      Xie, X.; Li, Z.; Zhang, Y.; Guo, S.; Pendharkar, A. I.; Lu, M.; Huang, L.; Huang, W.; Han, G. Emerging ≈800 nm excited lanthanide-doped upconversion nanoparticles. Small 2017, 13(6), 1602843.  doi: 10.1002/smll.v13.6

    35. [35]

      Sun, L.; Wei, R.; Feng, J.; Zhang, H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord. Chem. Rev. 2018, 364, 10-32.  doi: 10.1016/j.ccr.2018.03.007

    36. [36]

      Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C. W.; Bonn, G. K. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 2014, 19(12), 20580-20593.  doi: 10.3390/molecules191220580

    37. [37]

      Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114(21), 10869-10939.  doi: 10.1021/cr400532z

    38. [38]

      Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269(1), 57-66.  doi: 10.1016/j.canlet.2008.04.026

    39. [39]

      An, L.; Wang, Y.; Tian, Q.; Yang, S. Small gold nanorods: recent advances in synthesis, biological imaging, and cancer therapy. Materials 2017, 10(12), 1372.  doi: 10.3390/ma10121372

    40. [40]

      Dong, L.; Li, Y.; Li, Z.; Xu, N.; Liu, P.; Du, H.; Zhang, Y.; Huang, Y.; Zhu, J.; Ren, G.; Xie, J.; Wang, K.; Zhou, Y.; Shen, C.; Zhu, J.; Tao, J. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces 2018, 10(11), 9247-9256.  doi: 10.1021/acsami.7b18293

    41. [41]

      Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, Z.; Yu, H.; Zhang, P.; Wang, S.; Li, Y. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. 2017, 27(3), 1604300.  doi: 10.1002/adfm.v27.3

    42. [42]

      Yang, D.-P.; Liu, X.; Teng, C. P.; Owh, C.; Win, K. Y.; Lin, M.; Loh, X. J.; Wu, Y. L.; Li, Z.; Ye, E. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale 2017, 9(41), 15753-15759.  doi: 10.1039/C7NR06286A

    43. [43]

      Li, S.; Zhang, L.; Wang, T.; Li, L.; Wang, C.; Su, Z. The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy. Chem. Commun. 2015, 51(76), 14338-14341.  doi: 10.1039/C5CC05676D

    44. [44]

      Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929.  doi: 10.1021/nl070610y

    45. [45]

      Bi, C.; Chen, J.; Chen, Y.; Song, Y.; Li, A.; Mao, Z.; Gao, C.; Wang, D.; Möhwald, H.; Xia, H. Realizing a record photothermal conversion efficiency of spiky gold nanoparticles in the second near-infrared window by structure-based rational design. Chem. Mater. 2018, 30, 2709-2718.  doi: 10.1021/acs.chemmater.8b00312

    46. [46]

      Zhao, Y.; Liu, W.; Tian, Y.; Yang, Z.; Wang, X.; Zhang, Y.; Tang, Y.; Zhao, S.; Wang, C.; Liu, Y.; Sun, J.; Teng, Z.; Wang, S.; Lu, G. Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/ photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer. ACS Appl. Mater. Interfaces 2018, 10, 16992-17003.  doi: 10.1021/acsami.7b19013

    47. [47]

      Wang, L.; Chen, Y.; Lin, H. Y.; Hou, Y. T.; Yang, L. C.; Sun, A. Y.; Liu, J. Y.; Chang, C. W.; Wan, D. Near-IR-absorbing gold nanoframes with enhanced physiological stability and improved biocompatibility for in vivo biomedical applications. ACS Appl. Mater. Interfaces 2017, 9, 3873-3884.  doi: 10.1021/acsami.6b12591

    48. [48]

      Yang, K.; Yang, G.; Chen, L.; Cheng, L.; Wang, L.; Ge, C.; Liu, Z. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 2015, 38, 1-9.  doi: 10.1016/j.biomaterials.2014.10.052

    49. [49]

      Miao, Z. H.; Lv, L. X.; Li, K.; Liu, P. Y.; Li, Z.; Yang, H.; Zhao, Q.; Chang, M.; Zhen, L.; Xu, C.-Y. Liquid exfoliation of colloidal rhenium disulfide nanosheets as a multifunctional theranostic agent for in vivo photoacoustic/CT imaging and photothermal therapy. Small 2018, 14(14), 1703789.  doi: 10.1002/smll.v14.14

    50. [50]

      Bu, X.; Zhou, D.; Li, J.; Zhang, X.; Zhang, K.; Zhang, H.; Yang, B. Copper sulfide self-assembly architectures with improved photothermal performance. Langmuir 2014, 30(5), 1416-1423.  doi: 10.1021/la404009d

    51. [51]

      Sun, S.; Li, P.; Liang, S.; Yang, Z. Diversified copper sulfide (Cu2-xS) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. Nanoscale 2017, 9(32), 11357-11404.  doi: 10.1039/C7NR03828C

    52. [52]

      Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23(31), 3542-3547.  doi: 10.1002/adma.201101295

    53. [53]

      Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5(12), 9761-9771.

    54. [54]

      Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118(6), 3121-3207.  doi: 10.1021/acs.chemrev.7b00613

    55. [55]

      Liu, T.; Liu, Z. 2D MoS2 nanostructures for biomedical applications. Adv. Healthcare Mater. 2018, 7(8), 1701158.  doi: 10.1002/adhm.v7.8

    56. [56]

      Chen, H.; Liu, T.; Su, Z.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3(2), 74-89.  doi: 10.1039/C7NH00158D

    57. [57]

      Huang, X.; Zhang, W.; Guan, G.; Song, G.; Zou, R.; Hu, J. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 2017, 50(10), 2529-2538.  doi: 10.1021/acs.accounts.7b00294

    58. [58]

      Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M.; Shi, X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47(5), 1874-1900.  doi: 10.1039/C7CS00657H

    59. [59]

      Shen, L.; Li, B.; Qiao, Y. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 2018, 11(2), 324.  doi: 10.3390/ma11020324

    60. [60]

      Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 2014, 26(41), 7019-7026.  doi: 10.1002/adma.201402572

    61. [61]

      Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134(9), 3995-3998.  doi: 10.1021/ja211363w

    62. [62]

      Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M.; Zhao, D. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25(14), 2095-2100.  doi: 10.1002/adma.201204616

    63. [63]

      Fang, Z.; Jiao, S.; Wang, B.; Yin, W.; Liu, S.; Gao, R.; Liu, Z.; Pang, G.; Feng, S. Synthesis of reduced cubic phase WO3-x nanosheet by direct reduction of H2WO4·H2O. Materials Today Energy 2017, 6, 146-153.  doi: 10.1016/j.mtener.2017.09.014

    64. [64]

      Wang, F.; Song, C.; Guo, W.; Ding, D.; Zhang, Q.; Gao, Y.; Yan, M.; Guo, C.; Liu, S. Urchin-like tungsten suboxide for photoacoustic imaging-guided photothermal and photodynamic cancer combination therapy. New J. Chem. 2017, 41(23), 14179-14187.  doi: 10.1039/C7NJ03078A

    65. [65]

      Song, G.; Shen, J.; Jiang, F.; Hu, R.; Li, W.; An, L.; Zou, R.; Chen, Z.; Qin, Z.; Hu, J. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl. Mater. Interfaces 2014, 6(6), 3915-3922.  doi: 10.1021/am4050184

    66. [66]

      Fan, W.; Bu, W.; Shi, J. On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 2016, 28(21), 3987-4011.  doi: 10.1002/adma.201505678

    67. [67]

      Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem., Int. Ed. 2011, 50(32), 7385-7390.  doi: 10.1002/anie.v50.32

    68. [68]

      Sun, T.; Ai, F.; Zhu, G.; Wang, F. Upconversion in nanostructured materials: from optical tuning to biomedical applications. Chem. Asian J. 2018, 13(4), 373-385.  doi: 10.1002/asia.v13.4

    69. [69]

      Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N. Etching growth under surface confinement: an effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133(40), 15946-15949.  doi: 10.1021/ja207788h

    70. [70]

      Qin, Z.; Li, Y.; Gu, N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv. Healthcare Mater. 2018, 1800347.

    71. [71]

      Fu, G.; Liu, W.; Feng, S.; Yue, X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48(94), 11567-11569.  doi: 10.1039/c2cc36456e

    72. [72]

      Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23(6), 1414.  doi: 10.3390/molecules23061414

    73. [73]

      Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311(5761), 622-627.  doi: 10.1126/science.1114397

    74. [74]

      Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41(6), 2323-2343.  doi: 10.1039/C1CS15188F

    75. [75]

      Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136(20), 7317-7326.  doi: 10.1021/ja412735p

    76. [76]

      Xu, B.; Ju, Y.; Cui, Y.; Song, G.; Iwase, Y.; Hosoi, A.; Morita, Y. tLyP-1-conjugated Au-nanorod@SiO2core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy. Langmuir 2014, 30(26), 7789-7797.  doi: 10.1021/la500595b

    77. [77]

      Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J. Mater. Chem. B 2017, 5(2), 194-206.  doi: 10.1039/C6TB02249A

    78. [78]

      Jin, Y.; Yang, X.; Tian, J. Targeted polypyrrole nanoparticles for the identification and treatment of hepatocellular carcinoma. Nanoscale 2018, 10(20), 9594-9601.  doi: 10.1039/C8NR02036A

    79. [79]

      Wang, Y.; Xiao, Y.; Tang, R. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Chem. Eur. J. 2014, 20(37), 11826-11834.  doi: 10.1002/chem.201403480

    80. [80]

      Wang, M. Emerging multifunctional NIR photothermal therapy systems based on polypyrrole nanoparticles. Polymers 2016, 8(10), 373.  doi: 10.3390/polym8100373

    81. [81]

      Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25(5), 777-782.  doi: 10.1002/adma.201202211

    82. [82]

      Chen, M.; Fang, X.; Tang, S.; Zheng, N. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 2012, 48(71), 8934-8936.  doi: 10.1039/c2cc34463g

    83. [83]

      Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K.; Huh, Y.-M.; Haam, S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem., Int. Ed. 2011, 50(2), 441-444.  doi: 10.1002/anie.201005075

    84. [84]

      Mrówczyński, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10(9), 7541-7561.  doi: 10.1021/acsami.7b08392

    85. [85]

      Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 2016, 8(38), 16819-16840.  doi: 10.1039/C5NR09078D

    86. [86]

      Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24(41), 5586-5592.  doi: 10.1002/adma.201202625

    87. [87]

      Zhou, J.; Lu, Z.; Zhu, X.; Wang, X.; Liao, Y.; Ma, Z.; Li, F. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials 2013, 34(37), 9584-9592.  doi: 10.1016/j.biomaterials.2013.08.075

    88. [88]

      Lin, M.; Wang, D.; Li, S.; Tang, Q.; Liu, S.; Ge, R.; Liu, Y.; Zhang, D.; Sun, H.; Zhang, H.; Yang, B. Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials 2016, 104, 213-222.  doi: 10.1016/j.biomaterials.2016.07.021

    89. [89]

      Zhong, X.; Yang, K.; Dong, Z.; Yi, X.; Wang, Y.; Ge, C.; Zhao, Y.; Liu, Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer. Adv. Funct. Mater. 2015, 25(47), 7327-7336.  doi: 10.1002/adfm.v25.47

    90. [90]

      Dong, Z.; Gong, H.; Gao, M.; Zhu, W.; Sun, X.; Feng, L.; Fu, T.; Li, Y.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6(7), 1031-1042.  doi: 10.7150/thno.14431

    91. [91]

      Ge, R.; Lin, M.; Li, X.; Liu, S.; Wang, W.; Li, S.; Zhang, X.; Liu, Y.; Liu, L.; Shi, F.; Sun, H.; Zhang, H.; Yang, B. Cu2+-loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH-and near-infrared-light-stimulated thermochemotherapy. ACS Appl. Mater. Interfaces 2017, 9(23), 19706-19716.  doi: 10.1021/acsami.7b05583

    92. [92]

      Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128(6), 2115-2120.  doi: 10.1021/ja057254a

    93. [93]

      Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 19(20), 3136-3141.  doi: 10.1002/adma.200701974

    94. [94]

      Huang, X.; Peng, X.; Wang, Y.; Wang, Y.; Shin, D. M.; El-Sayed, M. A.; Nie, S. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010, 4(10), 5887-5896.  doi: 10.1021/nn102055s

    95. [95]

      Wang, J.; Zhu, C.; Han, J.; Han, N.; Xi, J.; Fan, L.; Guo, R. Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10(15), 12323-12330.  doi: 10.1021/acsami.7b16784

    96. [96]

      Liu, Z.; Ye, B.; Jin, M.; Chen, H.; Zhong, H.; Wang, X.; Guo, Z. Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 2015, 7(15), 6754-6761.  doi: 10.1039/C5NR01055A

    97. [97]

      Du, C.; Wang, A.; Fei, J.; Zhao, J.; Li, J. Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. J. Mater. Chem. B 2015, 3(22), 4539-4545.  doi: 10.1039/C5TB00560D

    98. [98]

      Jiang, N.; Shao, L.; Wang, J. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 2014, 26(20), 3282-3289.  doi: 10.1002/adma.v26.20

    99. [99]

      Hou, H.; Chen, L.; He, H.; Chen, L.; Zhao, Z.; Jin, Y. Fine-tuning the LSPR response of gold nanorod-polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation. J. Mater. Chem. B 2015, 3(26), 5189-5196.  doi: 10.1039/C5TB00556F

    100. [100]

      Liu, S.; Wang, L.; Lin, M.; Wang, D.; Song, Z.; Li, S.; Ge, R.; Zhang, X.; Liu, Y.; Li, Z.; Sun, H.; Yang, B.; Zhang, H. Cu(II)-doped polydopamine-coated gold nanorods for tumor theranostics. ACS Appl. Mater. Interfaces 2017, 9(51), 44293-44306.  doi: 10.1021/acsami.7b13643

    101. [101]

      Zhang, L.; Su, H.; Cai, J.; Cheng, D.; Ma, Y.; Zhang, J.; Zhou, C.; Liu, S.; Shi, H.; Zhang, Y.; Zhang, C. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 2016, 10(11), 10404-10417.  doi: 10.1021/acsnano.6b06267

    102. [102]

      Wang, S.; Zhao, X.; Wang, S.; Qian, J.; He, S. Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy. ACS Appl. Mater. Interfaces 2016, 8(37), 24368-24384.  doi: 10.1021/acsami.6b05907

    103. [103]

      Lu, W.; Singh, A. K.; Khan, S. A.; Senapati, D.; Yu, H.; Ray, P. C. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132(51), 18103-18114.  doi: 10.1021/ja104924b

    104. [104]

      Wang, L.; Meng, D.; Hao, Y.; Hu, Y.; Niu, M.; Zheng, C.; Yanyan, Y.; Li, D.; Zhang, P.; Chang, J.; Zhang, Z.; Zhang, Y. A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J. Mater. Chem. B 2016, 4(35), 5895-5906.  doi: 10.1039/C6TB01304J

    105. [105]

      Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134(28), 11358-11361.  doi: 10.1021/ja304180y

    106. [106]

      Li, J.; Han, J.; Xu, T.; Guo, C.; Bu, X.; Zhang, H.; Wang, L.; Sun, H.; Yang, B. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. Langmuir 2013, 29(23), 7102-7110.  doi: 10.1021/la401366c

    107. [107]

      Li, J.; Wang, W.; Zhao, L.; Rong, L.; Lan, S.; Sun, H.; Zhang, H.; Yang, B. Hydroquinone-assisted synthesis of branched Au-Ag nanoparticles with polydopamine coating as highly efficient photothermal agents. ACS Appl. Mater. Interfaces 2015, 7(21), 11613-11623.  doi: 10.1021/acsami.5b02666

    108. [108]

      Skralak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 2008, 41(12), 1587-1595.  doi: 10.1021/ar800018v

    109. [109]

      Au, L.; Zheng, D.; Zhou, F.; Li, Z.-Y.; Li, X.; Xia, Y. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2008, 2(8), 1645-1652.  doi: 10.1021/nn800370j

    110. [110]

      Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7(5), 1318-1322.  doi: 10.1021/nl070345g

    111. [111]

      Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6(7), 811-817.  doi: 10.1002/smll.v6:7

    112. [112]

      Jenkins, S. V.; Nedosekin, D. A.; Miller, E. K.; Zharov, V. P.; Dings, R. P. M.; Chen, J.; Griffin, R. J. Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. Int. J. Hyperthermia. 2018, 34(1), 19-29.  doi: 10.1080/02656736.2017.1317845

    113. [113]

      Jeon, J. W.; Ledin, P. A.; Geldmeier, J. A.; Ponder, J. F. Jr.; Mahmoud, M. A.; El-Sayed, M.; Reynolds, J. R.; Tsukruk, V. V. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates. Chem. Mater. 2016, 28(8), 2868-2881.  doi: 10.1021/acs.chemmater.6b00882

    114. [114]

      Zha, Z.; Wang, S.; Zhang, S.; Qu, E.; Ke, H.; Wang, J.; Dai, Z. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale 2013, 5(8), 3216-3219.  doi: 10.1039/c3nr00541k

    115. [115]

      Li, Y.; Lu, W.; Huang, Q.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5(8), 1161-1171.  doi: 10.2217/nnm.10.85

    116. [116]

      Ku, G.; Zhou, M.; Song, S.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 2012, 6(8), 7489-7496.  doi: 10.1021/nn302782y

    117. [117]

      Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional[64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 2010, 132(43), 15351-15358.  doi: 10.1021/ja106855m

    118. [118]

      Peng, H.; Ma, G.; Sun, K.; Mu, J.; Wang, H.; Lei, Z. High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization. J. Mater. Chem. A 2014, 2(10), 3303-3307.  doi: 10.1039/c3ta13859c

    119. [119]

      Zhao, R.; Sun, X.; Sun, J.; Wang, L.; Han, J. Polypyrrole-modified CuS nanoprisms for efficient near-infrared photothermal therapy. RSC Adv. 2017, 7(17), 10143-10149.  doi: 10.1039/C6RA28228H

    120. [120]

      Li, Z.; Hu, Y.; Howard, K. A.; Jiang, T.; Fan, X.; Miao, Z.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano 2016, 10(1), 984-997.  doi: 10.1021/acsnano.5b06259

    121. [121]

      Wang, C.; Bai, J.; Liu, Y.; Jia, X.; Jiang, X. Polydopamine coated selenide molybdenum: anew photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng. 2016, 2(11), 2011-2017.  doi: 10.1021/acsbiomaterials.6b00416

    122. [122]

      Zheng, R.; Wang, S.; Tian, Y.; Jiang, X.; Fu, D.; Shen, S.; Yang, W. Polydopamine-coated magnetic composite particles with an enhanced photothermal effect. ACS Appl. Mater. Interfaces 2015, 7(29), 15876-15884.  doi: 10.1021/acsami.5b03201

    123. [123]

      Saeed, M.; Iqbal, M. Z.; Ren, W.; Xia, Y.; Liu, C.; Khanac, W. S.; Wu, A. Controllable synthesis of Fe3O4 nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2. J. Mater. Chem. B 2018, 6(22), 3800-3810.  doi: 10.1039/C8TB00745D

    124. [124]

      Espinosa, A.; Corato, R. D.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016, 10(2), 2436-2446.  doi: 10.1021/acsnano.5b07249

    125. [125]

      Ge, R.; Li, X.; Lin, M.; Wang, D.; Li, S.; Liu, S.; Tang, Q.; Liu, Y.; Jiang, J.; Liu, L.; Sun, H.; Zhang, H.; Yang, B. Fe3O4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl. Mater. Interfaces 2016, 8(35), 22942-22952.  doi: 10.1021/acsami.6b07997

    126. [126]

      Zhang, X.; Xu, X.; Li, T.; Lin, M.; Lin, X.; Zhang, H.; Sun, H.; Yang, B. Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl. Mater. Interfaces 2014, 6(16), 14552-14561.  doi: 10.1021/am503831m

    127. [127]

      Lin, L.-S.; Cong, Z.-X.; Cao, J.-B.; Ke, K.-M.; Peng, Q.-L.; Gao, J.; Yang, H.-H.; Liu, G.; Chen, X. Multifunctional Fe3O4@polydopamine coreshell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8(4), 3876-3883.  doi: 10.1021/nn500722y

    128. [128]

      Guo, H.; Sun, H.; Zhu, H.; Guo, H.; Sun, H. Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy. New J. Chem. 2018, 42(9), 7119-7124.  doi: 10.1039/C8NJ00454D

    129. [129]

      Zhou, J.; Li, J.; Ding, X.; Liu, J.; Luo, Z.; Liu, Y.; Ran, Q.; Cai, K. Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging. Nanotechnology 2015, 26(42), 425101.  doi: 10.1088/0957-4484/26/42/425101

    130. [130]

      Guo, W.; Wang, F.; Ding, D.; Song, C.; Guo, C.; Liu, S. TiO2–x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater. 2017, 29(21), 9262-9274.  doi: 10.1021/acs.chemmater.7b03241

    131. [131]

      Jin, Y.; Li, Y.; Ma, X.; Zha, Z.; Shi, L.; Tian, J.; Dai, Z. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 2014, 35(22), 5795-5804.  doi: 10.1016/j.biomaterials.2014.03.086

    132. [132]

      Xiao, Z.; Peng, C.; Jiang, X.; Peng, Y.; Huang, X.; Guan, G.; Zhang, W.; Liu, X.; Qin, Z.; Hu, J. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy. Nanoscale 2016, 8(26), 12917-12928.  doi: 10.1039/C6NR03336A

  • 加载中
    1. [1]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    2. [2]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    3. [3]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    4. [4]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    5. [5]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    6. [6]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    7. [7]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    8. [8]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    9. [9]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    10. [10]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    11. [11]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    12. [12]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    13. [13]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    14. [14]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    15. [15]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    16. [16]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    17. [17]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    18. [18]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    19. [19]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    20. [20]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

Metrics
  • PDF Downloads(0)
  • Abstract views(746)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return