Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites
- Corresponding author: Le-Ning Zhang, 951446482@qq.com Hao Zhang, hao_zhang@jlu.edu.cn
Citation: Shu-Wei Liu, Lu Wang, Min Lin, Yi Liu, Le-Ning Zhang, Hao Zhang. Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 115-128. doi: 10.1007/s10118-019-2193-4
Gong, P.; Liang, S.; Carlton, E. J.; Jiang, Q.; Wu, J.; Wang, L.; Remals, J. V. Urbanisation and health in China. Lancet 2012, 379(9818), 843-852.
doi: 10.1016/S0140-6736(11)61878-3
Chen, W.; Zheng, R.; Zhang, S.; Zeng, H.; Xia, C.; Zuo, T.; Yang, Z.; Zou, X.; He, J. Cancer incidence and mortality in China. 2013. Cancer Lett. 2017, 401, 63-71.
doi: 10.1016/j.canlet.2017.04.024
Choueiri, T. K.; Motzer, R. J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 2017, 376(4), 354-366.
doi: 10.1056/NEJMra1601333
Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2(12), 751-760.
doi: 10.1038/nnano.2007.387
Fang, R. H.; Kroll, A. V.; Gao, W.; Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30(23), 1706759.
doi: 10.1002/adma.v30.23
Wang, Z.; Liu, W.; Shi, J.; Chen, N.; Fan, C. Nanoscale delivery systems for cancer immunotherapy. Mater. Horiz. 2018, 5(3), 344-362.
doi: 10.1039/C7MH00991G
Vankayala, R.; Hwang, K. C. Near-infrared-light-activatable nanomaterials-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 2018, 30(23), 1706320.
doi: 10.1002/adma.v30.23
Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan J. Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 2017, 46(22), 6905-6926.
doi: 10.1039/C7CS00516D
Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today 2018, 19, 146-187.
doi: 10.1016/j.nantod.2018.02.010
Zhao, J.; Zhong, D.; Zhou, S. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6(3), 349-365.
doi: 10.1039/C7TB02573D
Liu, B.; Li, C.; Cheng, Z.; Hou, Z.; Huang, S.; Lin, J. Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 2016, 4(6), 890-909.
doi: 10.1039/C6BM00076B
Zhang, P.; Hu, C.; Ran, W.; Meng, J.; Yin, Q.; Li, Y. Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 2016, 6(7), 948-968.
doi: 10.7150/thno.15217
Kang, H.; Mintri, S.; Menon, A. V.; Lee, H. Y.; Choi, H. S. Kim, J. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale 2015, 7(45), 18848-18862.
Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47(7), 2280-2297.
doi: 10.1039/C7CS00522A
Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29(23), 1606134.
doi: 10.1002/adma.201606134
Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115(19), 10410-10488.
doi: 10.1021/acs.chemrev.5b00193
Spyratou, E.; Makropoulou, M.; Efstathopoulos, E. P.; Georgakilas, A. G.; Sihver, L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 2017, 9(12), 173.
doi: 10.3390/cancers9120173
Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater. 2018,1800662.
doi: 10.1002/adma.201800662
Wang, H.; Chen, Q.; Zhou, S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47(11), 4198-4232.
doi: 10.1039/C7CS00399D
Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11(1), 1-41.
doi: 10.1007/s12274-017-1616-1
Cai, Y.; Si, W.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Organic dye based nanoparticles for cancer phototheranostics. Small 2018, 14(25), 1704247.
doi: 10.1002/smll.v14.25
Wang, H.; Li, X.; Tse, B. W. C.; Yang, H.; Thorling, C. A.; Liu, Y.; Touraud, M.; Chouane, J. B.; Liu, X.; Roberts, M. S.; Liang, X. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018, 8(5), 1227-1242.
doi: 10.7150/thno.22872
Liang, X.; Li, Y.; Li, X.; Jing, L.; Deng, Z.; Yue, X.; Li, C.; Dai, Z. PEGylated polypyrrole nanoparticles conjugating gadolinium chelates for dual-modal MRI/photoacoustic imaging guided photothermal therapy of cancer. Adv. Funct. Mater. 2015, 25(9), 1451-1462.
doi: 10.1002/adfm.v25.9
Song, X.; Gong, H.; Yin, S.; Cheng, L.; Wang, C.; Li, Z.; Li, Y.; Wang, X.; Liu, G.; Liu, Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater. 2014, 24(9), 1194-1201.
doi: 10.1002/adfm.v24.9
Yang, Y.; Awb, J.; Xing, B. Nanostructures for NIR light-controlled therapies. Nanoscale 2017, 9(11), 3698-3718.
doi: 10.1039/C6NR09177F
Lin, M.; Wang, D. D., Liu, S. W., Zhou, D.; Zhang, H.; Liu, C.; Sun, H.-C. Construction of nanoparticle/polymer composite photothermal nanoplatforms and therapeutic applications. Acta Polymerica Sinica (in Chinese) 2015, 2, 133-146.
Lin, M.; Guo, C.; Li, J.; Zhou, D.; Liu, K.; Zhang, X.; Xu, T.; Zhang, H.; Wang, L.; Yang, B. Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS Appl. Mater. Interfaces 2014, 6(8), 5860-5868.
doi: 10.1021/am500715f
Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111(9), 3636-3641.
doi: 10.1021/jp064341w
Dykman, L. A.; Khlebtsov, N. G. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016, 108, 13-34.
doi: 10.1016/j.biomaterials.2016.08.040
Abadeer, N. S.; Murphy, C. J. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 2016, 120(9), 4691-4716.
doi: 10.1021/acs.jpcc.5b11232
Zhu, S.; Gong, L.; Xie, J.; Gu, Z.; Zhao, Y. Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 2017, 1(12), 1700220.
doi: 10.1002/smtd.v1.12
Li, X.; Shan, J.; Zhang, W.; Su, S.; Yuwen, L.; Wang, L. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 2017, 13(5), 1602660.
doi: 10.1002/smll.v13.5
Estelrich, J.; Busquets, M. A. Iron oxide nanoparticles in photothermal therapy. Molecules 2018, 23(7), 1567.
doi: 10.3390/molecules23071567
Xie, X.; Li, Z.; Zhang, Y.; Guo, S.; Pendharkar, A. I.; Lu, M.; Huang, L.; Huang, W.; Han, G. Emerging ≈800 nm excited lanthanide-doped upconversion nanoparticles. Small 2017, 13(6), 1602843.
doi: 10.1002/smll.v13.6
Sun, L.; Wei, R.; Feng, J.; Zhang, H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord. Chem. Rev. 2018, 364, 10-32.
doi: 10.1016/j.ccr.2018.03.007
Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C. W.; Bonn, G. K. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 2014, 19(12), 20580-20593.
doi: 10.3390/molecules191220580
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114(21), 10869-10939.
doi: 10.1021/cr400532z
Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269(1), 57-66.
doi: 10.1016/j.canlet.2008.04.026
An, L.; Wang, Y.; Tian, Q.; Yang, S. Small gold nanorods: recent advances in synthesis, biological imaging, and cancer therapy. Materials 2017, 10(12), 1372.
doi: 10.3390/ma10121372
Dong, L.; Li, Y.; Li, Z.; Xu, N.; Liu, P.; Du, H.; Zhang, Y.; Huang, Y.; Zhu, J.; Ren, G.; Xie, J.; Wang, K.; Zhou, Y.; Shen, C.; Zhu, J.; Tao, J. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces 2018, 10(11), 9247-9256.
doi: 10.1021/acsami.7b18293
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, Z.; Yu, H.; Zhang, P.; Wang, S.; Li, Y. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. 2017, 27(3), 1604300.
doi: 10.1002/adfm.v27.3
Yang, D.-P.; Liu, X.; Teng, C. P.; Owh, C.; Win, K. Y.; Lin, M.; Loh, X. J.; Wu, Y. L.; Li, Z.; Ye, E. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale 2017, 9(41), 15753-15759.
doi: 10.1039/C7NR06286A
Li, S.; Zhang, L.; Wang, T.; Li, L.; Wang, C.; Su, Z. The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy. Chem. Commun. 2015, 51(76), 14338-14341.
doi: 10.1039/C5CC05676D
Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929.
doi: 10.1021/nl070610y
Bi, C.; Chen, J.; Chen, Y.; Song, Y.; Li, A.; Mao, Z.; Gao, C.; Wang, D.; Möhwald, H.; Xia, H. Realizing a record photothermal conversion efficiency of spiky gold nanoparticles in the second near-infrared window by structure-based rational design. Chem. Mater. 2018, 30, 2709-2718.
doi: 10.1021/acs.chemmater.8b00312
Zhao, Y.; Liu, W.; Tian, Y.; Yang, Z.; Wang, X.; Zhang, Y.; Tang, Y.; Zhao, S.; Wang, C.; Liu, Y.; Sun, J.; Teng, Z.; Wang, S.; Lu, G. Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/ photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer. ACS Appl. Mater. Interfaces 2018, 10, 16992-17003.
doi: 10.1021/acsami.7b19013
Wang, L.; Chen, Y.; Lin, H. Y.; Hou, Y. T.; Yang, L. C.; Sun, A. Y.; Liu, J. Y.; Chang, C. W.; Wan, D. Near-IR-absorbing gold nanoframes with enhanced physiological stability and improved biocompatibility for in vivo biomedical applications. ACS Appl. Mater. Interfaces 2017, 9, 3873-3884.
doi: 10.1021/acsami.6b12591
Yang, K.; Yang, G.; Chen, L.; Cheng, L.; Wang, L.; Ge, C.; Liu, Z. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 2015, 38, 1-9.
doi: 10.1016/j.biomaterials.2014.10.052
Miao, Z. H.; Lv, L. X.; Li, K.; Liu, P. Y.; Li, Z.; Yang, H.; Zhao, Q.; Chang, M.; Zhen, L.; Xu, C.-Y. Liquid exfoliation of colloidal rhenium disulfide nanosheets as a multifunctional theranostic agent for in vivo photoacoustic/CT imaging and photothermal therapy. Small 2018, 14(14), 1703789.
doi: 10.1002/smll.v14.14
Bu, X.; Zhou, D.; Li, J.; Zhang, X.; Zhang, K.; Zhang, H.; Yang, B. Copper sulfide self-assembly architectures with improved photothermal performance. Langmuir 2014, 30(5), 1416-1423.
doi: 10.1021/la404009d
Sun, S.; Li, P.; Liang, S.; Yang, Z. Diversified copper sulfide (Cu2-xS) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. Nanoscale 2017, 9(32), 11357-11404.
doi: 10.1039/C7NR03828C
Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23(31), 3542-3547.
doi: 10.1002/adma.201101295
Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5(12), 9761-9771.
Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118(6), 3121-3207.
doi: 10.1021/acs.chemrev.7b00613
Liu, T.; Liu, Z. 2D MoS2 nanostructures for biomedical applications. Adv. Healthcare Mater. 2018, 7(8), 1701158.
doi: 10.1002/adhm.v7.8
Chen, H.; Liu, T.; Su, Z.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3(2), 74-89.
doi: 10.1039/C7NH00158D
Huang, X.; Zhang, W.; Guan, G.; Song, G.; Zou, R.; Hu, J. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 2017, 50(10), 2529-2538.
doi: 10.1021/acs.accounts.7b00294
Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M.; Shi, X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47(5), 1874-1900.
doi: 10.1039/C7CS00657H
Shen, L.; Li, B.; Qiao, Y. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 2018, 11(2), 324.
doi: 10.3390/ma11020324
Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 2014, 26(41), 7019-7026.
doi: 10.1002/adma.201402572
Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134(9), 3995-3998.
doi: 10.1021/ja211363w
Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M.; Zhao, D. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25(14), 2095-2100.
doi: 10.1002/adma.201204616
Fang, Z.; Jiao, S.; Wang, B.; Yin, W.; Liu, S.; Gao, R.; Liu, Z.; Pang, G.; Feng, S. Synthesis of reduced cubic phase WO3-x nanosheet by direct reduction of H2WO4·H2O. Materials Today Energy 2017, 6, 146-153.
doi: 10.1016/j.mtener.2017.09.014
Wang, F.; Song, C.; Guo, W.; Ding, D.; Zhang, Q.; Gao, Y.; Yan, M.; Guo, C.; Liu, S. Urchin-like tungsten suboxide for photoacoustic imaging-guided photothermal and photodynamic cancer combination therapy. New J. Chem. 2017, 41(23), 14179-14187.
doi: 10.1039/C7NJ03078A
Song, G.; Shen, J.; Jiang, F.; Hu, R.; Li, W.; An, L.; Zou, R.; Chen, Z.; Qin, Z.; Hu, J. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl. Mater. Interfaces 2014, 6(6), 3915-3922.
doi: 10.1021/am4050184
Fan, W.; Bu, W.; Shi, J. On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 2016, 28(21), 3987-4011.
doi: 10.1002/adma.201505678
Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem., Int. Ed. 2011, 50(32), 7385-7390.
doi: 10.1002/anie.v50.32
Sun, T.; Ai, F.; Zhu, G.; Wang, F. Upconversion in nanostructured materials: from optical tuning to biomedical applications. Chem. Asian J. 2018, 13(4), 373-385.
doi: 10.1002/asia.v13.4
Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N. Etching growth under surface confinement: an effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133(40), 15946-15949.
doi: 10.1021/ja207788h
Qin, Z.; Li, Y.; Gu, N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv. Healthcare Mater. 2018, 1800347.
Fu, G.; Liu, W.; Feng, S.; Yue, X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48(94), 11567-11569.
doi: 10.1039/c2cc36456e
Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23(6), 1414.
doi: 10.3390/molecules23061414
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311(5761), 622-627.
doi: 10.1126/science.1114397
Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41(6), 2323-2343.
doi: 10.1039/C1CS15188F
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136(20), 7317-7326.
doi: 10.1021/ja412735p
Xu, B.; Ju, Y.; Cui, Y.; Song, G.; Iwase, Y.; Hosoi, A.; Morita, Y. tLyP-1-conjugated Au-nanorod@SiO2core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy. Langmuir 2014, 30(26), 7789-7797.
doi: 10.1021/la500595b
Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J. Mater. Chem. B 2017, 5(2), 194-206.
doi: 10.1039/C6TB02249A
Jin, Y.; Yang, X.; Tian, J. Targeted polypyrrole nanoparticles for the identification and treatment of hepatocellular carcinoma. Nanoscale 2018, 10(20), 9594-9601.
doi: 10.1039/C8NR02036A
Wang, Y.; Xiao, Y.; Tang, R. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Chem. Eur. J. 2014, 20(37), 11826-11834.
doi: 10.1002/chem.201403480
Wang, M. Emerging multifunctional NIR photothermal therapy systems based on polypyrrole nanoparticles. Polymers 2016, 8(10), 373.
doi: 10.3390/polym8100373
Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25(5), 777-782.
doi: 10.1002/adma.201202211
Chen, M.; Fang, X.; Tang, S.; Zheng, N. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 2012, 48(71), 8934-8936.
doi: 10.1039/c2cc34463g
Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K.; Huh, Y.-M.; Haam, S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem., Int. Ed. 2011, 50(2), 441-444.
doi: 10.1002/anie.201005075
Mrówczyński, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10(9), 7541-7561.
doi: 10.1021/acsami.7b08392
Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 2016, 8(38), 16819-16840.
doi: 10.1039/C5NR09078D
Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24(41), 5586-5592.
doi: 10.1002/adma.201202625
Zhou, J.; Lu, Z.; Zhu, X.; Wang, X.; Liao, Y.; Ma, Z.; Li, F. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials 2013, 34(37), 9584-9592.
doi: 10.1016/j.biomaterials.2013.08.075
Lin, M.; Wang, D.; Li, S.; Tang, Q.; Liu, S.; Ge, R.; Liu, Y.; Zhang, D.; Sun, H.; Zhang, H.; Yang, B. Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials 2016, 104, 213-222.
doi: 10.1016/j.biomaterials.2016.07.021
Zhong, X.; Yang, K.; Dong, Z.; Yi, X.; Wang, Y.; Ge, C.; Zhao, Y.; Liu, Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer. Adv. Funct. Mater. 2015, 25(47), 7327-7336.
doi: 10.1002/adfm.v25.47
Dong, Z.; Gong, H.; Gao, M.; Zhu, W.; Sun, X.; Feng, L.; Fu, T.; Li, Y.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6(7), 1031-1042.
doi: 10.7150/thno.14431
Ge, R.; Lin, M.; Li, X.; Liu, S.; Wang, W.; Li, S.; Zhang, X.; Liu, Y.; Liu, L.; Shi, F.; Sun, H.; Zhang, H.; Yang, B. Cu2+-loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH-and near-infrared-light-stimulated thermochemotherapy. ACS Appl. Mater. Interfaces 2017, 9(23), 19706-19716.
doi: 10.1021/acsami.7b05583
Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128(6), 2115-2120.
doi: 10.1021/ja057254a
Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 19(20), 3136-3141.
doi: 10.1002/adma.200701974
Huang, X.; Peng, X.; Wang, Y.; Wang, Y.; Shin, D. M.; El-Sayed, M. A.; Nie, S. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010, 4(10), 5887-5896.
doi: 10.1021/nn102055s
Wang, J.; Zhu, C.; Han, J.; Han, N.; Xi, J.; Fan, L.; Guo, R. Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10(15), 12323-12330.
doi: 10.1021/acsami.7b16784
Liu, Z.; Ye, B.; Jin, M.; Chen, H.; Zhong, H.; Wang, X.; Guo, Z. Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 2015, 7(15), 6754-6761.
doi: 10.1039/C5NR01055A
Du, C.; Wang, A.; Fei, J.; Zhao, J.; Li, J. Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. J. Mater. Chem. B 2015, 3(22), 4539-4545.
doi: 10.1039/C5TB00560D
Jiang, N.; Shao, L.; Wang, J. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 2014, 26(20), 3282-3289.
doi: 10.1002/adma.v26.20
Hou, H.; Chen, L.; He, H.; Chen, L.; Zhao, Z.; Jin, Y. Fine-tuning the LSPR response of gold nanorod-polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation. J. Mater. Chem. B 2015, 3(26), 5189-5196.
doi: 10.1039/C5TB00556F
Liu, S.; Wang, L.; Lin, M.; Wang, D.; Song, Z.; Li, S.; Ge, R.; Zhang, X.; Liu, Y.; Li, Z.; Sun, H.; Yang, B.; Zhang, H. Cu(II)-doped polydopamine-coated gold nanorods for tumor theranostics. ACS Appl. Mater. Interfaces 2017, 9(51), 44293-44306.
doi: 10.1021/acsami.7b13643
Zhang, L.; Su, H.; Cai, J.; Cheng, D.; Ma, Y.; Zhang, J.; Zhou, C.; Liu, S.; Shi, H.; Zhang, Y.; Zhang, C. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 2016, 10(11), 10404-10417.
doi: 10.1021/acsnano.6b06267
Wang, S.; Zhao, X.; Wang, S.; Qian, J.; He, S. Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy. ACS Appl. Mater. Interfaces 2016, 8(37), 24368-24384.
doi: 10.1021/acsami.6b05907
Lu, W.; Singh, A. K.; Khan, S. A.; Senapati, D.; Yu, H.; Ray, P. C. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132(51), 18103-18114.
doi: 10.1021/ja104924b
Wang, L.; Meng, D.; Hao, Y.; Hu, Y.; Niu, M.; Zheng, C.; Yanyan, Y.; Li, D.; Zhang, P.; Chang, J.; Zhang, Z.; Zhang, Y. A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J. Mater. Chem. B 2016, 4(35), 5895-5906.
doi: 10.1039/C6TB01304J
Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134(28), 11358-11361.
doi: 10.1021/ja304180y
Li, J.; Han, J.; Xu, T.; Guo, C.; Bu, X.; Zhang, H.; Wang, L.; Sun, H.; Yang, B. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. Langmuir 2013, 29(23), 7102-7110.
doi: 10.1021/la401366c
Li, J.; Wang, W.; Zhao, L.; Rong, L.; Lan, S.; Sun, H.; Zhang, H.; Yang, B. Hydroquinone-assisted synthesis of branched Au-Ag nanoparticles with polydopamine coating as highly efficient photothermal agents. ACS Appl. Mater. Interfaces 2015, 7(21), 11613-11623.
doi: 10.1021/acsami.5b02666
Skralak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 2008, 41(12), 1587-1595.
doi: 10.1021/ar800018v
Au, L.; Zheng, D.; Zhou, F.; Li, Z.-Y.; Li, X.; Xia, Y. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2008, 2(8), 1645-1652.
doi: 10.1021/nn800370j
Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7(5), 1318-1322.
doi: 10.1021/nl070345g
Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6(7), 811-817.
doi: 10.1002/smll.v6:7
Jenkins, S. V.; Nedosekin, D. A.; Miller, E. K.; Zharov, V. P.; Dings, R. P. M.; Chen, J.; Griffin, R. J. Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. Int. J. Hyperthermia. 2018, 34(1), 19-29.
doi: 10.1080/02656736.2017.1317845
Jeon, J. W.; Ledin, P. A.; Geldmeier, J. A.; Ponder, J. F. Jr.; Mahmoud, M. A.; El-Sayed, M.; Reynolds, J. R.; Tsukruk, V. V. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates. Chem. Mater. 2016, 28(8), 2868-2881.
doi: 10.1021/acs.chemmater.6b00882
Zha, Z.; Wang, S.; Zhang, S.; Qu, E.; Ke, H.; Wang, J.; Dai, Z. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale 2013, 5(8), 3216-3219.
doi: 10.1039/c3nr00541k
Li, Y.; Lu, W.; Huang, Q.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5(8), 1161-1171.
doi: 10.2217/nnm.10.85
Ku, G.; Zhou, M.; Song, S.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 2012, 6(8), 7489-7496.
doi: 10.1021/nn302782y
Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional[64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 2010, 132(43), 15351-15358.
doi: 10.1021/ja106855m
Peng, H.; Ma, G.; Sun, K.; Mu, J.; Wang, H.; Lei, Z. High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization. J. Mater. Chem. A 2014, 2(10), 3303-3307.
doi: 10.1039/c3ta13859c
Zhao, R.; Sun, X.; Sun, J.; Wang, L.; Han, J. Polypyrrole-modified CuS nanoprisms for efficient near-infrared photothermal therapy. RSC Adv. 2017, 7(17), 10143-10149.
doi: 10.1039/C6RA28228H
Li, Z.; Hu, Y.; Howard, K. A.; Jiang, T.; Fan, X.; Miao, Z.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano 2016, 10(1), 984-997.
doi: 10.1021/acsnano.5b06259
Wang, C.; Bai, J.; Liu, Y.; Jia, X.; Jiang, X. Polydopamine coated selenide molybdenum: anew photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng. 2016, 2(11), 2011-2017.
doi: 10.1021/acsbiomaterials.6b00416
Zheng, R.; Wang, S.; Tian, Y.; Jiang, X.; Fu, D.; Shen, S.; Yang, W. Polydopamine-coated magnetic composite particles with an enhanced photothermal effect. ACS Appl. Mater. Interfaces 2015, 7(29), 15876-15884.
doi: 10.1021/acsami.5b03201
Saeed, M.; Iqbal, M. Z.; Ren, W.; Xia, Y.; Liu, C.; Khanac, W. S.; Wu, A. Controllable synthesis of Fe3O4 nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2. J. Mater. Chem. B 2018, 6(22), 3800-3810.
doi: 10.1039/C8TB00745D
Espinosa, A.; Corato, R. D.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016, 10(2), 2436-2446.
doi: 10.1021/acsnano.5b07249
Ge, R.; Li, X.; Lin, M.; Wang, D.; Li, S.; Liu, S.; Tang, Q.; Liu, Y.; Jiang, J.; Liu, L.; Sun, H.; Zhang, H.; Yang, B. Fe3O4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl. Mater. Interfaces 2016, 8(35), 22942-22952.
doi: 10.1021/acsami.6b07997
Zhang, X.; Xu, X.; Li, T.; Lin, M.; Lin, X.; Zhang, H.; Sun, H.; Yang, B. Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl. Mater. Interfaces 2014, 6(16), 14552-14561.
doi: 10.1021/am503831m
Lin, L.-S.; Cong, Z.-X.; Cao, J.-B.; Ke, K.-M.; Peng, Q.-L.; Gao, J.; Yang, H.-H.; Liu, G.; Chen, X. Multifunctional Fe3O4@polydopamine coreshell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8(4), 3876-3883.
doi: 10.1021/nn500722y
Guo, H.; Sun, H.; Zhu, H.; Guo, H.; Sun, H. Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy. New J. Chem. 2018, 42(9), 7119-7124.
doi: 10.1039/C8NJ00454D
Zhou, J.; Li, J.; Ding, X.; Liu, J.; Luo, Z.; Liu, Y.; Ran, Q.; Cai, K. Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging. Nanotechnology 2015, 26(42), 425101.
doi: 10.1088/0957-4484/26/42/425101
Guo, W.; Wang, F.; Ding, D.; Song, C.; Guo, C.; Liu, S. TiO2–x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater. 2017, 29(21), 9262-9274.
doi: 10.1021/acs.chemmater.7b03241
Jin, Y.; Li, Y.; Ma, X.; Zha, Z.; Shi, L.; Tian, J.; Dai, Z. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 2014, 35(22), 5795-5804.
doi: 10.1016/j.biomaterials.2014.03.086
Xiao, Z.; Peng, C.; Jiang, X.; Peng, Y.; Huang, X.; Guan, G.; Zhang, W.; Liu, X.; Qin, Z.; Hu, J. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy. Nanoscale 2016, 8(26), 12917-12928.
doi: 10.1039/C6NR03336A
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Yongkang Yue , Zhou Xu , Kaiqing Ma , Fangjun Huo , Xuemei Qin , Kuanshou Zhang , Caixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Fengyun Li , Zerong Pei , Shuting Chen , Gen li , Mengyang Liu , Liqin Ding , Jingbo Liu , Feng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752
Bohan Chen , Liming Gong , Jing Feng , Mingji Jin , Liqing Chen , Zhonggao Gao , Wei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Zhe Li , Ping-Zhao Liang , Li Xu , Fei-Yu Yang , Tian-Bing Ren , Lin Yuan , Xia Yin , Xiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656