Citation: Pei Xu, Zhao-Pei Cui, Gang Ruan, Yun-Sheng Ding. Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene[J]. Chinese Journal of Polymer Science, ;2019, 37(3): 243-252. doi: 10.1007/s10118-019-2192-5 shu

Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene

  • Corresponding author: Pei Xu, chxuper@hfut.edu.cn Yun-Sheng Ding, dingys@hfut.edu.cn
  • Received Date: 4 July 2018
    Revised Date: 23 September 2018
    Accepted Date: 25 September 2018
    Available Online: 2 November 2018

  • To investigate the performance of graphene (Gra) modified with ethoxycarbonyl ionic liquid (IL), chain mobility and crystallization kinetics of poly(L-lactic acid) (PLLA), a series of PLLA nanocomposites have been prepared using solution-cast method. IL can improve the dispersion of Gra in PLLA matrix and the samples containing IL have higher growth rate of PLLA spherulite than neat PLLA does. PLLA/IL/Gra and PLLA/2Gra exhibit the same relaxation strength and time of αN relaxation that corresponds to the longest normal mode motion at 110−140 °C. PLLA/IL/Gra shows a faster crystallization rate than PLLA/2Gra does, which might be attributed to the Gra-imidazolium cation interaction in IL modified Gra, the significant dispersion effect of IL at Gra surface, and the increase of nuclei density of PLLA/IL/Gra.
  • 加载中
    1. [1]

      Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455-482.  doi: 10.1016/j.progpolymsci.2007.01.005

    2. [2]

      Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 23, 1841-1846.

    3. [3]

      Proikakis, C. S.; Mamouzelos, N. J.; Tarantili, P. A.; Andreopoulos, A. G. Swelling and hydrolytic degradation of poly (D, L-lactic acid) in aqueous solutions. Polym. Degrad. Stab. 2006, 91, 614-619.  doi: 10.1016/j.polymdegradstab.2005.01.060

    4. [4]

      Hiljanen-Vainio, M.; Varpomaa, P.; Seppälä, J.; Törmälä, P. Modification of poly (L-lactides) by blending: mechanical and hydrolytic behavior. Macromol. Chem. Phys. 1996, 197, 1503-1523.  doi: 10.1002/macp.1996.021970427

    5. [5]

      And, K. A.; Hsu, S. L.; And, L. W. K.; Tang, F. W. Roles of Conformational and configurational defects on the physical aging of amorphous poly(lactic acid). J. Phys. Chem. B 2007, 111, 12322-12327.  doi: 10.1021/jp074509t

    6. [6]

      Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657-1677.  doi: 10.1016/j.progpolymsci.2012.07.005

    7. [7]

      Xing, Q.; Li, R. B.; Dong, X.; Zhang, X. Q.; Wang, D. J.; Zhang, D. L. Y. Phase morphology, crystallization behavior and mechanical properties of poly (L-lactide) toughened with biodegradable polyurethane: effect of composition and hard segment ratio. Chinese J. Polym. Sci. 2015, 33, 1294-1304.  doi: 10.1007/s10118-015-1679-y

    8. [8]

      Yang, G.; Gao, Q.; Ouyang, C. F.; Zheng, K. S.; Guo, Y. Influence of nucleating agent on PLLA crystalline and mechanical properties. Adv. Mater. Res. 2013, 624, 269-273.

    9. [9]

      Xing, Q.; Li, R. B.; Dong, X.; Luo, F. L.; Kuang, X.; Wang, D. J.; Zhang, L. Y. Enhanced crystallization rate of poly (L-lactide) mediated by a hydrazide compound: nucleating mechanism study. Macromol. Chem. Phys. 2015, 10, 1134-1145.

    10. [10]

      Shi, H.; Chen, X.; Chen, W. K.; Pang, S. J.; Pan, L. S.; Xu, N.; Li, T. Crystallization behavior, heat resistance, and mechanical performances of PLLA/myo-inositol blends. J. Appl. Polym. Sci. 2017, 134, 44732.

    11. [11]

      Xing, Q.; Li, R. B.; Zhang, X. Q.; Dong, X.; Wang, D. J.; Zhang, L. Y. Tailoring crystallization behavior of poly (L-lactide) with a low molecular weight aliphatic amide. Colloid Polym. Sci. 2015, 293, 3573-3583.  doi: 10.1007/s00396-015-3730-5

    12. [12]

      Chen, L.; Hou, X.; Song, N.; Shi, L.; Ding, P. Cellulose/graphene bioplastic for thermal management: enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Compos. Part. A-Appl. S. 2018, 107, 189-196.  doi: 10.1016/j.compositesa.2017.12.014

    13. [13]

      Xu, J. Z.; Chen, T.; Yang, C. L.; Li, Z. M.; Mao, Y. M.; Zeng, B. Q.; Hsiao, B. S. Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study. Macromolecules 2010, 43, 5000-5008.  doi: 10.1021/ma100304n

    14. [14]

      Liang, Y. Y.; Yang, S.; Jiang, X.; Zhong, G. J.; Xu, J. Z.; Li, Z. M. Nucleation ability of thermally reduced graphene oxide for polylactide: role of size and structural integrity. J. Phys. Chem. B 2015, 119, 4777-4787.  doi: 10.1021/jp511742b

    15. [15]

      Papageorgiou, G. Z.; Terzopoulou, Z.; Bikiaris, D.; Triantafyllidis, K. S.; Diamanti, E.; Gournis, D.; Pissis, P. Evaluation of the formed interface in biodegradable poly(L-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochim. Acta 2014, 597, 48-57.  doi: 10.1016/j.tca.2014.10.007

    16. [16]

      Manafi, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Ehsaninamin, P. Effect of graphene nanoplatelets on crystallization kinetics of poly (lactic acid), Soft Mater. 2014, 12, 433-444.  doi: 10.1080/1539445X.2014.959598

    17. [17]

      Huang, H. D.; Xu, J. Z.; Fan, Y.; Xu, L.; Li, Z. M. Poly(L-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J. Phys. Chem. B 2013, 117, 10641-10651.  doi: 10.1021/jp4055796

    18. [18]

      Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123-150.  doi: 10.1039/B006677J

    19. [19]

      Armand, M.; Endres, F.; Macfarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621-629.  doi: 10.1038/nmat2448

    20. [20]

      Rogers, R. D.; Seddon, K. R. Ionic liquids--solvents of the future? Science 2003, 5646, 792-793.

    21. [21]

      Scott, M. P.; Brazel, C. S.; Benton, M. G.; Mays, J. W.; Holbrey, J. D.; Rogers, R. D. Application of ionic liquids as plasticizers for poly (methyl methacrylate). Chem. Commun. 2002, 13, 1370-1371.

    22. [22]

      Gui, H.; Li, Y.; Chen, S.; Xu, P.; Zheng, B.; Ding, Y. Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA. Macromol. Res. 2014, 22, 583-591.  doi: 10.1007/s13233-014-2085-y

    23. [23]

      Leng, J.; Purohit, P. J.; Kang, N.; Wang, D. Y.; Falkenhagen, J.; Emmerling, F. Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. Eur. Polym. J. 2015, 68, 338-354.  doi: 10.1016/j.eurpolymj.2015.05.008

    24. [24]

      Saiter, A.; Delpouve, N.; Dargent, E.; Oberhauser, W.; Conzatti, L.; Cicogna, F.; Passaglia, E. Probing the chain segment mobility at the interface of semi-crystalline polylactide/clay nanocomposites. Eur. Polym. J. 2016, 78, 274-289.  doi: 10.1016/j.eurpolymj.2016.03.040

    25. [25]

      Klonos, P.; Terzopoulou, Z.; Koutsoumpis, S.; Zidropoulos, S.; Kripotou, S.; Papageorgiou, G. Z.; Pissis, P. Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(L-lactic acid) and nano-inclusions of 1-3D geometry studied by thermal and dielectric techniques. Eur. Polym. J. 2016, 82, 16-34.  doi: 10.1016/j.eurpolymj.2016.07.002

    26. [26]

      Xu, P.; Gui, H. G.; Yang, S. Z.; Ding, Y. S.; Hao, Q. Dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid blends. Macromol. Res. 2014, 22, 304-309.  doi: 10.1007/s13233-014-2038-5

    27. [27]

      Zhao, Y.; Hu, Z. Graphene in ionic liquids: collective van der Waals interaction and hindrance of self-assembly pathway. J. Phys. Chem. B 2013, 36, 10540-10547.

    28. [28]

      Saxena, A. P.; Deepa, M.; Joshi, A. G.; Bhandari, S.; Srivastava, A. K. Poly(3,4-ethylenedioxythiophene)-Ionic Liquid Functionalized Graphene/Reduced Graphene Oxide Nanostructures: Improved Conduction and Electrochromism. ACS Appl. Mater. Interface 2011, 4, 1115-1126.

    29. [29]

      Lu, J.; Yang, J. X.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano. 2009, 8, 2367.

    30. [30]

      Li, Y.; Wang, Y.; Liu, L.; Han, L.; Xiang, F.; Zhou, Z. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 326-339.  doi: 10.1002/polb.v47:3

    31. [31]

      Xu, J. Z.; Zhang, Z. J.; Xu, H.; Chen, J. B.; Ran, R.; Li, Z. M. Highly enhanced crystallization kinetics of poly(l-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 2015, 48, 4891-4900.  doi: 10.1021/acs.macromol.5b00462

    32. [32]

      Li, Y.; Wu, H.; Wang, Y.; Liu, L.; Han, L.; Wu, J.; Xiang, F. Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 520-528.  doi: 10.1002/polb.v48:5

    33. [33]

      Androsch, R.; Iqbal, H. N.; Schick, C. Non-isothermal crystal nucleation of poly (L-lactic acid). Polymer 2015, 81, 151-158.  doi: 10.1016/j.polymer.2015.11.006

    34. [34]

      Brüster, B.; Montesinos, A.; Reumaux, P.; Pérez-Camargo, R. A.; Mugica, A.; Zubitur, M.; Addiego, F. Crystallization kinetics of polylactide: Reactive plasticization and reprocessing effects. Polym. Degrad. Stabil. 2018, 148, 56-66.  doi: 10.1016/j.polymdegradstab.2018.01.009

    35. [35]

      Hu, Y.; Xu, P.; Gui, H.; Yang, S.; Ding, Y. Effect of graphene modified by a long alkyl chain ionic liquid on crystallization kinetics behavior of poly(vinylidene fluoride). RSC Adv. 2015, 112, 92418-92427.

    36. [36]

      Chen, H. M.; Du, X. C.; Yang, A. S.; Yang, J. H.; Huang, T.; Zhang, N.; Zhang, C. L. Effect of graphene oxides on thermal degradation and crystallization behavior of poly (L-lactide). RSC Adv. 2014, 7, 3443-3456.

    37. [37]

      Wei, T.; Pang, S.; Xu, N.; Pan, L.; Zhang, Z.; Xu, R.; Lin, Q. Crystallization behavior and isothermal crystallization kinetics of PLLA blended with ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate. J. Appl. Polym. Sci. 2015, 132, 41308.

    38. [38]

      Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 2009, 395, 1589-1611.  doi: 10.1007/s00216-009-3169-y

    39. [39]

      Wu, D.; Cheng, Y.; Feng, S.; Yao, Z.; Zhang, M. Crystallization behavior of polylactide/graphene composites. Ind. Eng. Chem. Res. 2013, 52, 6731-6739.  doi: 10.1021/ie4004199

    40. [40]

      Xiao, H.; Lu, W.; Yeh, J. T. Effect of plasticizer on the crystallization behavior of poly (lactic acid). J. Appl. Polym. Sci. 2009, 113, 112-121.  doi: 10.1002/app.v113:1

    41. [41]

      Zhao, Y.; Qiu, Z.; Yang, W. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly (L-lactide). J. Phys. Chem. B 2008, 112, 16461-16468.  doi: 10.1021/jp805230e

    42. [42]

      Mijović, J.; Sy, J. W. Molecular dynamics during crystallization of poly (L-lactic acid) as studied by broad-band dielectric relaxation spectroscopy. Macromolecules 2002, 35, 6370-6376.  doi: 10.1021/ma0203647

    43. [43]

      Jeszka, J. K.; Pietrzak, L.; Pluta, M.; Boiteux, G. Dielectric properties of polylactides and their nanocomposites with montmorillonite. J. Non-Cryst. Solids 2010, 356, 818-821.  doi: 10.1016/j.jnoncrysol.2009.06.057

    44. [44]

      Brás, A. R.; Viciosa, M. T.; Wang, Y.; Dionísio, M.; Mano, J. F. Crystallization of Poly(L-lactic acid) Probed with Dielectric Relaxation Spectroscopy. Macromolecules 2006, 39, 6513-6520.  doi: 10.1021/ma061148r

    45. [45]

      Klonos, P.; Kripotou, S.; Kyritsis, A.; Papageorgiou, G. Z.; Bikiaris, D.; Gournis, D.; Pissis, P. Glass transition and segmental dynamics in poly(L-lactic acid)/graphene oxide nanocomposites. Thermochim. Acta 2015, 617, 44-53.  doi: 10.1016/j.tca.2015.08.020

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    3. [3]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    4. [4]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    5. [5]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    6. [6]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    7. [7]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    8. [8]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    9. [9]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    10. [10]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    11. [11]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    12. [12]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    13. [13]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    14. [14]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    17. [17]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    18. [18]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

Metrics
  • PDF Downloads(0)
  • Abstract views(785)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return