Citation: José Antonio Tec-Sánchez, Andrés Iván Oliva Arias, Manuel Aguilar-Vega, Juan Valerio Cauich-Rodríguez, José Luis Santiago-García. Preparation and Characterization of Flexible, Transparent and Thermally Stable Aromatic Co-polyamides[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 136-141. doi: 10.1007/s10118-019-2190-7 shu

Preparation and Characterization of Flexible, Transparent and Thermally Stable Aromatic Co-polyamides

  • Corresponding author: Juan Valerio Cauich-Rodríguez, jvcr@cicy.mx
  • † Rest in peace
  • Received Date: 6 June 2018
    Revised Date: 8 August 2018
    Accepted Date: 25 September 2018
    Available Online: 1 November 2018

  • Two aromatic co-polyamides were synthesized combining two diacid monomers containing bulky pendant groups, 5-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)isophthalic acid (DEAIA) and 5-tert-butylisophthalic acid (TERT), with 4,4′-(hexafluoroisopropylidene)dianiline (HFA) or 2,3,5,6-tetramethyl-1,4-phenylenediamine (Durene) by direct polycondensation. The structures of the obtained aromatic co-polyamides were confirmed by FTIR, Raman and 1H-NMR. The co-copolyamide films, DHTH and DDTD, exhibited rms-roughness values between 0.94 and 1.60 nm, respectively. Moreover, they presented good thermal stability up to 300 °C. Young’s moduli of the co-polyamide films were between 4.1 and 4.3 GPa. X-ray diffraction results showed that the co-polyamide films were amorphous due to the incorporation of both bulky pendant groups, tert-butyl and dibenzobarrelene. The combination of bulky pendant groups provided intrinsically transparent co-polyamide films with a transmittance higher than 88% in the range of 400−780 nm. Due to these outstanding film and optical properties, they are suggested to be flexible substrates in applications for solar cell and other portable electronic devices.
  • 加载中
    1. [1]

      Ismail, A.; Abdullah, M. J. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J. King. Saud. Univ. Sci. 2013, 25, 209-215.  doi: 10.1016/j.jksus.2012.12.004

    2. [2]

      Wang, Q.; Xie, Y.; Soltani-kordshuli, F.; Eslamian, M. Progress in emerging solution-processed thin film solar cells – Part I: Polymer solar cells. Renew. Sustain. Energy Rev. 2016, 56, 347-361.  doi: 10.1016/j.rser.2015.11.063

    3. [3]

      Krebs, F. C. in Polymeric solar cells: Materials, design, manufacture, DEStech Publications, Inc., Pennsylvania, 2010, p. 15.

    4. [4]

      Sibinski, M.; Znajdek, K. in Innovative elastic thin-film solar cell structures, InTech, Rijeka, 2011, p. 253-274.

    5. [5]

      Ni, H.; Liu, J.; Wang, Z.; Yang, S. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J. Ind. Eng. Chem. 2015, 28, 16-27.  doi: 10.1016/j.jiec.2015.03.013

    6. [6]

      Santiago-García, J. L.; Pérez-Francisco J. M.; Zolotukhin, M. G.; Vázquez-Torres, H.; Aguilar-Vega, M.; González-Díaz, M.O. Gas transport properties of novel aromatic poly- and copolyamides bearing bulky functional groups. J. Memb. Sci. 2017, 522, 333-342.  doi: 10.1016/j.memsci.2016.09.035

    7. [7]

      Meng, S.; Sun, N.; Su, K. Optically transparent polyamides bearing phenoxyl, diphenylamine and fluorene units with high-contrast of electrochromic and electrofluorescent behaviors. Polymer 2017, 116, 89-98.  doi: 10.1016/j.polymer.2017.03.066

    8. [8]

      García, J. M.; García, F. C.; Serna, F.; de la Peña, J. L. High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35, 623-686.  doi: 10.1016/j.progpolymsci.2009.09.002

    9. [9]

      Liaw, D. J.; Chen, W. H.; Hu, C. K.; Lee, K. R.; Lai, J. Y. High optical transparency, low dielectric constant and light color of novel organosoluble polyamides with bulky alicyclic pendent group. Polymer 2007, 48, 6571-6580.  doi: 10.1016/j.polymer.2007.08.041

    10. [10]

      Kim, Y.; Chang, J. Colorless and Transparent Polyimide Nanocomposites: Thermo-optical properties, morphology, and gas permeation. Macromol. Res. 2013, 21, 228-233.  doi: 10.1007/s13233-013-1072-z

    11. [11]

      Huang, W.; Yin, J. Synthesis, photophysical properties, and electron paramagnetic resonance studies of new poly (bisbenzothiazole)s containing bulky pendant groups. Polym. Eng. Sci. 2007, 47, 429-438.  doi: 10.1002/(ISSN)1548-2634

    12. [12]

      De Abajo, J.; de la Campa, J. G. Processable Aromatic Polyimides. Adv. Polym. Sci. 1999, 140, 23-59.  doi: 10.1007/3-540-49815-X

    13. [13]

      Santiago-García, J. L.; Pérez-Francisco, J. M.; Loría-Bastarrachea, M. I.; Aguilar-Vega, M. Synthesis and characterization of novel polyamides containing dibenzobarrelene pendant groups. Des. Monomers Polym. 2015, 18, 350-359.  doi: 10.1080/15685551.2015.1012624

    14. [14]

      Yamazaki, N.; Higashi, F.; Matsumoto, M. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Chem. 1975, 13, 1373-1380.

    15. [15]

      Huerta, E.; Corona, J.; Oliva, A. I. Universal testing machine for mechanical properties of thin materials. Rev. Mex. Fis. 2010, 56, 317-322.

    16. [16]

      Bera, D.; Dasgupta, B.; Chatterjee, S.; Maji, S.; Banerjee, S. Synthesis, characterization, and properties of semifluorinated organo-soluble new aromatic polyamides. Polym. Adv. Technol. 2012, 23, 77-84.  doi: 10.1002/pat.v23.1

    17. [17]

      Mittal, V. in High performance polymers and engineering plastics, Scrivener Publishing LLC, Massachusetts, 2011, p. 1-20.

    18. [18]

      Johannes, K. F. in High performance polymers, William Andrew, New York, 2014, p. 321-341.

    19. [19]

      Ando, S.; Matsuura, T.; Sasaki, S. Coloration of aromatic polyimides and electronic properties of their source materials. Polym. J. 1997, 29, 69-76.  doi: 10.1295/polymj.29.69

    20. [20]

      Yi, L.; Li, C.; Huang, W.; Yan, D. Soluble and transparent polyimides with high Tg from a new diamine containing tert-butyl and fluorene units. J. Polym. Sci. Part. A Polym. Chem. 2016, 54, 976-984.  doi: 10.1002/pola.v54.7

    21. [21]

      Ge, Z.; Yang, S.; Tao, Z.; Liu, J. Fan, L. Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides and aromatic diamines. Polymer 2004, 45, 3627-3635.  doi: 10.1016/j.polymer.2004.03.037

    22. [22]

      Javadi, A.; Shockravi, A.; Koohgard, M.; Malek, A.; Shourkaei, F. A.; Ando, S. Nitro-substituted polyamides: A new class of transparent and highly refractive materials. Eur. Polym. J. 2015, 66, 328-341.  doi: 10.1016/j.eurpolymj.2015.02.032

    23. [23]

      Liaw, D. J.; Huang, C. C.; Chen, W. H. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide-imide)s based on noncoplanar 2,2′-dimethyl-4,4′- biphenylene units. Polymer 2006, 47, 2337-2348.  doi: 10.1016/j.polymer.2006.01.028

    24. [24]

      Bera, D.; Bandyopadhyay, P.; Ghosh, S.; Banerjee, S. Gas transport properties of aromatic polyamides containing adamantyl moiety. J. Memb. Sci. 2014, 453, 175-191.  doi: 10.1016/j.memsci.2013.10.073

    25. [25]

      Hsiao, S. H.; Yang, C.P.; Tsai, C. Y.; Liou, G. S. A novel class of organosoluble and light-colored fluorinated polyamides derived from 2,2′-bis(4-amino-2-trifluoromethylphenoxy) biphenyl or 2,2′-bis(4-amino-2-trifluoromethylphenoxy) -1,1′-binaphthyl. Eur. Polym. J. 2004, 40, 1081-1094.  doi: 10.1016/j.eurpolymj.2004.01.001

    26. [26]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907-974.  doi: 10.1016/j.progpolymsci.2012.02.005

  • 加载中
    1. [1]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    2. [2]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    3. [3]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    4. [4]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    5. [5]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    6. [6]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    7. [7]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    8. [8]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    9. [9]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    10. [10]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    11. [11]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    12. [12]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    15. [15]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    16. [16]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    17. [17]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    18. [18]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    19. [19]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    20. [20]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

Metrics
  • PDF Downloads(0)
  • Abstract views(634)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return