Citation: Shu-Yan Jiang, Xin Zhao. Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 1-10. doi: 10.1007/s10118-019-2189-0 shu

Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders

  • Corresponding author: Xin Zhao, xzhao@sioc.ac.cn
  • Received Date: 8 August 2018
    Revised Date: 14 September 2018
    Accepted Date: 16 September 2018
    Available Online: 2 November 2018

  • Two-dimensional (2D) materials have been demonstrated to exhibit unique properties originating from its 2D nature. In recent years, the construction of 2D materials has become a topic of great interest. This article summarizes the recent advance of 2D supramolecular organic frameworks (SOFs) which are homogeneously constructed in solution phase through self-assembly of rationally designed building blocks. These 2D SOFs are soluble and still maintain stable network structures in solutions, which exhibit uniqueness not only in structures but also in properties. In this concise review, the SOFs-related background is briefly introduced firstly, followed by outlining the research progress of soluble 2D SOFs from the perspective of monomer design, assembly, and structural characterization. The article ends with a personal outlook on the future development of this new class of supramolecular polymers.
  • 加载中
    1. [1]

      Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017-7036.  doi: 10.1021/ja01002a035

    2. [2]

      Lehn J. M. in Supramolecular Chemistry: Concepts and Perspectives. Wiley VCH, Weinheim, 2006.

    3. [3]

      Fouquuey, C.; Lehn, J. M.; Levelut, A. M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 1990, 2, 254-257.  doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813−817.

    5. [5]

      Yang, L.; Tan, X.; Wang, Z.; Zhang, X. supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196-7293.  doi: 10.1021/cr500633b

    6. [6]

      Qu, D. H.; Wang, Q. C.; Zhang, Q. W.; Ma, X.; Tian, H. Photoresponsive host–guest functional systems. Chem. Rev. 2015, 115, 7543-7588.  doi: 10.1021/cr5006342

    7. [7]

      Guo, D. S.; Liu, Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 2012, 41, 5907-5921.  doi: 10.1039/c2cs35075k

    8. [8]

      Xu, J. F.; Zhang, X. Study on supramolecular polymers in china: an overview and outlook. Acta Polym. Sinica 2017, 37-49. (in Chinese)  doi: 10.11777/j.issn1000-3304.2017.16262

    9. [9]

      Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interaction. Chem. Soc. Rev. 2015, 44, 815-832.  doi: 10.1039/C4CS00327F

    10. [10]

      Harada A. in Supramolecular Polymers Chemistry. Wiley VCH, Weinheim, 2012.

    11. [11]

      Fan, Y.; Lin, F.; Xu, X. N.; Xu, J. Q.; Zhao, X. Construction of a rod-coil supramolecular copolymer through CB[8]-encapsulation-enhanced donor- acceptor interaction. Acta Polym. Sinica, 2017, 80-85. (in Chinese)  doi: 10.11777/j.issn1000-3004.2017.16242

    12. [12]

      Yi, Z. J.; Wu, Z. Q.; Lin, F.; Qi, Q. Y.; X. N.; Zhao, X. A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8]uril-encapsulation-enhanced donor–acceptor interaction. Chinese Chem. Lett. 2017, 28, 1167-1171.  doi: 10.1016/j.cclet.2017.03.029

    13. [13]

      Chen, S. G.; Yu, Y.; Zhao, X.; Ma, Y.; Jianh, X. K.; Li, Z. T. Highly stable chiral (A)6-B supramolecular copolymers: A multivalency-based self-assembly process. J. Am. Chem. Soc. 2011, 133, 11124-11127.  doi: 10.1021/ja205059z

    14. [14]

      Zhou, C.; Tian, J.; Wang, J. L.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A three-dimensional cross-linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polym. Chem. 2014, 5, 341-345.  doi: 10.1039/C3PY01006F

    15. [15]

      Ji, X. F.; Wang, P.; Wang, H.; Huang, F. A Fluorescent supramolecular crosslinked polymer gel formed by crown ether based host-guest interactions and aggregation induced emission. Chinese J. Polym. Sci. 2015, 33, 890-898.  doi: 10.1007/s10118-015-1639-6

    16. [16]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. E.; Grigorieva, I. V.; Firsov, A. A. Electric field in atomically thin carbon films. Science 2004, 306, 666-669.  doi: 10.1126/science.1102896

    17. [17]

      Stock, N.; Biswas, S. Synthesis of Metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.  doi: 10.1021/cr200304e

    18. [18]

      Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.  doi: 10.1021/cr300014x

    19. [19]

      Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42, 548-568.  doi: 10.1039/C2CS35072F

    20. [20]

      Waller, P. J.; Gandara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053-3063.  doi: 10.1021/acs.accounts.5b00369

    21. [21]

      Zhang, K. D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.; Zhou, T. Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. T. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 2013, 135, 17913-17918.  doi: 10.1021/ja4086935

    22. [22]

      Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z. T. Supramolecular organic frameworks (SOFs): water-phase periodic porous self-assembled architectures. Acta Chim. Sinica 2015, 73, 471-479. (in Chinese)  doi: 10.6023/A14120880

    23. [23]

      Tian, J.; Chen, L.; Zhang, D. W.; Liu, Y.; Li, Z. T. Supramolecular organic frameworks: Engineering periodicity in water through host–guest chemistry. Chem. Commun. 2016, 52, 6351-6362.  doi: 10.1039/C6CC02331B

    24. [24]

      Wang, H.; Zhang, D. W.; Li, Z. T. Supramolecular organic frameworks: porous periodic supramolecular polymers. Acta Polym. Sinica 2017, 19-26. (in Chinese)  doi: 10.11777/j.issn1000-3304.2017.16234

    25. [25]

      Zhang, Z. J.; Zhang, H. Y.; Chen, L.; Liu, Y. Interconversion between [5]pseudorotaxane and [3]pseudorotaxane by pasting/detaching two axle molecule. J. Org. Chem. 2011, 76, 8270-8276.  doi: 10.1021/jo201441r

    26. [26]

      Jeon, W. S.; Kim, H. J.; Lee, C.; Kim, K. Control of the stoichiometry in host–guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 2002, 1828-1829.

    27. [27]

      Zhang, L.; Zhou, T. Y.; Tian, J.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem. 2014, 5, 4715-4721.  doi: 10.1039/C4PY00139G

    28. [28]

      Zhang, L.; Jia, Y.; Wang, H.; Zhang, D. W.; Zhang, Q.; Liu, Y.; Li, Z. T. pH-Responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity. Polym. Chem. 2016, 7, 1861-1865.  doi: 10.1039/C5PY02054A

    29. [29]

      Pfeffermann, M.; Dong, R.; Graf, R.; Zajaczkowshi, W.; Gorelik, T.; Pisula, W.; Barita, A.; Müllen, K.; Feng, X. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 2015, 137, 14525-14532.  doi: 10.1021/jacs.5b09638

    30. [30]

      Zhou, T. Y.; Qi, Q.-Y.; Zhao, Q. L.; Fu, J.; Liu, Y.; Ma, Z.; Zhao, X. Highly thermally stable hydrogels derived from monolayered two-dimensional supramolecular polymers. Polym. Chem. 2015, 6, 3018-3023.  doi: 10.1039/C5PY00072F

    31. [31]

      Zhang, Y.; Zhou, T. Y.; Zhang, K. D.; Dai, J. L.; Zhu, Y. Y.; Zhao, X. Encapsulation enhanced dimerization of a series of 4-aryl-N-methylpyridinium derivatives in water: new building blocks for self-assembly in aqueous media. Chem. Asian J. 2014, 9, 1530-1534.  doi: 10.1002/asia.v9.6

    32. [32]

      Zhang, Y.; Zhan, T. G.; Zhou, T. Y.; Qi, Q. Y.; Xu, X. N.; Zhao, X. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chem. Commun. 2016, 52, 7588-7591.  doi: 10.1039/C6CC03631G

    33. [33]

      Zhang, S.; Yan, J. M.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. The specific detection of Cu(II) using an AIE-active alanine ester. Chinese Chem. Lett. 2013, 24, 668-672.  doi: 10.1016/j.cclet.2013.05.014

    34. [34]

      Lee, H. J.; Kim, H. J.; Lee, E. C.; Kim, J.; Park, S. Y. Highly luminescent and water-soluble two-dimensional supramolecular organic framework: all-organic photosensitizer template for visible-light-driven hydrogen evolution from water. Chem. Asian J. 2018, 13, 390-394.  doi: 10.1002/asia.v13.4

    35. [35]

      Zhang, X.; Nie, C. B.; Zhou, T. Y.; Qi, Q. Y.; Fu, J.; Wang, X. Z.; Dai, L.; Chen, Y.; Zhao, X. The construction of single-layer two-dimensional supramolecular organic frameworks in water through the self-assembly of rigid vertexes and flexible edges. Polym. Chemistry 2015, 6, 1923-1927.  doi: 10.1039/C4PY01669F

    36. [36]

      Xu, S. Q.; Zhang, X.; Nie, C. B.; Pang, Z. F.; Xu, X. N.; Zhao, X. The construction of a two-dimensional supramolecular organic framework with parallelogram pores and stepwise fluorescence enhancement. Chem. Commun. 2015, 51, 16417-16420.  doi: 10.1039/C5CC05875A

    37. [37]

      Chen, X. M.; Zhang, Y. M.; Liu, Y. Adsorption of anionic dyes from water by thermostable supramolecular hydrogel. Supramol. Chem. 2016, 28, 817-824.  doi: 10.1080/10610278.2016.1158406

    38. [38]

      Li, Y.; Dong, Y.; Miao, X.; Ren, Y.; Zhang, B.; Wang, P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L., Shape-controllable and fluorescent supramolecular organic frameworks through aqueous host-guest complexation. Angew. Chem. Int. Ed. 2018, 57, 729-733.  doi: 10.1002/anie.201710553

    39. [39]

      Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation. Nat. Commun. 2016, 7, 10742.  doi: 10.1038/ncomms10742

    40. [40]

      Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 2014, 136, 15885-15888.  doi: 10.1021/ja5092936

    41. [41]

      Pang, Z. F.; Xu, S. Q.; Zhou, T. Y.; Liang, R. R.; Zhan, T. G.; Zhao, X. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy. J. Am. Chem. Soc. 2016, 138, 4710-4713.  doi: 10.1021/jacs.6b01244

    42. [42]

      Qian, C.; Qi, Q. Y.; Jiang, G. F.; Cui, F. Z.; Tian, Y.; Zhao, X. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange. J. Am. Chem. Soc. 2017, 139, 6736-6743.  doi: 10.1021/jacs.7b02303

  • 加载中
    1. [1]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    7. [7]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    8. [8]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    9. [9]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    10. [10]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    11. [11]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    12. [12]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    13. [13]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    14. [14]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    15. [15]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    16. [16]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    17. [17]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    18. [18]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    19. [19]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    20. [20]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

Metrics
  • PDF Downloads(0)
  • Abstract views(826)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return